Metamath Proof Explorer


Theorem lcm2un

Description: Least common multiple of natural numbers up to 2 equals 2. (Contributed by metakunt, 25-Apr-2024)

Ref Expression
Assertion lcm2un lcm _ 1 2 = 2

Proof

Step Hyp Ref Expression
1 2nn 2
2 id 2 2
3 2 lcmfunnnd 2 lcm _ 1 2 = lcm _ 1 2 1 lcm 2
4 1 3 ax-mp lcm _ 1 2 = lcm _ 1 2 1 lcm 2
5 2m1e1 2 1 = 1
6 5 oveq2i 1 2 1 = 1 1
7 6 fveq2i lcm _ 1 2 1 = lcm _ 1 1
8 7 oveq1i lcm _ 1 2 1 lcm 2 = lcm _ 1 1 lcm 2
9 4 8 eqtri lcm _ 1 2 = lcm _ 1 1 lcm 2
10 lcm1un lcm _ 1 1 = 1
11 10 oveq1i lcm _ 1 1 lcm 2 = 1 lcm 2
12 1z 1
13 2z 2
14 lcmcom 1 2 1 lcm 2 = 2 lcm 1
15 12 13 14 mp2an 1 lcm 2 = 2 lcm 1
16 lcm1 2 2 lcm 1 = 2
17 13 16 ax-mp 2 lcm 1 = 2
18 2re 2
19 0le2 0 2
20 18 19 pm3.2i 2 0 2
21 absid 2 0 2 2 = 2
22 20 21 ax-mp 2 = 2
23 17 22 eqtri 2 lcm 1 = 2
24 15 23 eqtri 1 lcm 2 = 2
25 11 24 eqtri lcm _ 1 1 lcm 2 = 2
26 9 25 eqtri lcm _ 1 2 = 2