Metamath Proof Explorer


Theorem lcm1un

Description: Least common multiple of natural numbers up to 1 equals 1. (Contributed by metakunt, 25-Apr-2024)

Ref Expression
Assertion lcm1un lcm _ 1 1 = 1

Proof

Step Hyp Ref Expression
1 1nn 1
2 id 1 1
3 2 lcmfunnnd 1 lcm _ 1 1 = lcm _ 1 1 1 lcm 1
4 1 3 ax-mp lcm _ 1 1 = lcm _ 1 1 1 lcm 1
5 1m1e0 1 1 = 0
6 5 oveq2i 1 1 1 = 1 0
7 fz10 1 0 =
8 6 7 eqtri 1 1 1 =
9 8 fveq2i lcm _ 1 1 1 = lcm _
10 lcmf0 lcm _ = 1
11 9 10 eqtri lcm _ 1 1 1 = 1
12 11 oveq1i lcm _ 1 1 1 lcm 1 = 1 lcm 1
13 1z 1
14 lcmid 1 1 lcm 1 = 1
15 13 14 ax-mp 1 lcm 1 = 1
16 abs1 1 = 1
17 15 16 eqtri 1 lcm 1 = 1
18 12 17 eqtri lcm _ 1 1 1 lcm 1 = 1
19 4 18 eqtri lcm _ 1 1 = 1