| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|
| 2 |
|
fveq2 |
|
| 3 |
|
abs0 |
|
| 4 |
2 3
|
eqtrdi |
|
| 5 |
1 4
|
eqeq12d |
|
| 6 |
|
lcmcl |
|
| 7 |
6
|
nn0cnd |
|
| 8 |
7
|
anidms |
|
| 9 |
8
|
adantr |
|
| 10 |
|
zabscl |
|
| 11 |
10
|
zcnd |
|
| 12 |
11
|
adantr |
|
| 13 |
|
zcn |
|
| 14 |
13
|
adantr |
|
| 15 |
|
simpr |
|
| 16 |
14 15
|
absne0d |
|
| 17 |
|
lcmgcd |
|
| 18 |
17
|
anidms |
|
| 19 |
|
gcdid |
|
| 20 |
19
|
oveq2d |
|
| 21 |
13 13
|
absmuld |
|
| 22 |
18 20 21
|
3eqtr3d |
|
| 23 |
22
|
adantr |
|
| 24 |
9 12 12 16 23
|
mulcan2ad |
|
| 25 |
|
lcm0val |
|
| 26 |
5 24 25
|
pm2.61ne |
|