Step |
Hyp |
Ref |
Expression |
1 |
|
lcmfunnnd.1 |
|- ( ph -> N e. NN ) |
2 |
1
|
nncnd |
|- ( ph -> N e. CC ) |
3 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
4 |
2 3
|
npcand |
|- ( ph -> ( ( N - 1 ) + 1 ) = N ) |
5 |
4
|
oveq2d |
|- ( ph -> ( 1 ... ( ( N - 1 ) + 1 ) ) = ( 1 ... N ) ) |
6 |
|
nnm1nn0 |
|- ( N e. NN -> ( N - 1 ) e. NN0 ) |
7 |
1 6
|
syl |
|- ( ph -> ( N - 1 ) e. NN0 ) |
8 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
9 |
8
|
eleq2i |
|- ( ( N - 1 ) e. NN0 <-> ( N - 1 ) e. ( ZZ>= ` 0 ) ) |
10 |
7 9
|
sylib |
|- ( ph -> ( N - 1 ) e. ( ZZ>= ` 0 ) ) |
11 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
12 |
11
|
fveq2i |
|- ( ZZ>= ` ( 1 - 1 ) ) = ( ZZ>= ` 0 ) |
13 |
12
|
eleq2i |
|- ( ( N - 1 ) e. ( ZZ>= ` ( 1 - 1 ) ) <-> ( N - 1 ) e. ( ZZ>= ` 0 ) ) |
14 |
13
|
a1i |
|- ( ph -> ( ( N - 1 ) e. ( ZZ>= ` ( 1 - 1 ) ) <-> ( N - 1 ) e. ( ZZ>= ` 0 ) ) ) |
15 |
10 14
|
mpbird |
|- ( ph -> ( N - 1 ) e. ( ZZ>= ` ( 1 - 1 ) ) ) |
16 |
|
1z |
|- 1 e. ZZ |
17 |
|
fzsuc2 |
|- ( ( 1 e. ZZ /\ ( N - 1 ) e. ( ZZ>= ` ( 1 - 1 ) ) ) -> ( 1 ... ( ( N - 1 ) + 1 ) ) = ( ( 1 ... ( N - 1 ) ) u. { ( ( N - 1 ) + 1 ) } ) ) |
18 |
16 17
|
mpan |
|- ( ( N - 1 ) e. ( ZZ>= ` ( 1 - 1 ) ) -> ( 1 ... ( ( N - 1 ) + 1 ) ) = ( ( 1 ... ( N - 1 ) ) u. { ( ( N - 1 ) + 1 ) } ) ) |
19 |
15 18
|
syl |
|- ( ph -> ( 1 ... ( ( N - 1 ) + 1 ) ) = ( ( 1 ... ( N - 1 ) ) u. { ( ( N - 1 ) + 1 ) } ) ) |
20 |
5 19
|
eqtr3d |
|- ( ph -> ( 1 ... N ) = ( ( 1 ... ( N - 1 ) ) u. { ( ( N - 1 ) + 1 ) } ) ) |
21 |
4
|
sneqd |
|- ( ph -> { ( ( N - 1 ) + 1 ) } = { N } ) |
22 |
21
|
uneq2d |
|- ( ph -> ( ( 1 ... ( N - 1 ) ) u. { ( ( N - 1 ) + 1 ) } ) = ( ( 1 ... ( N - 1 ) ) u. { N } ) ) |
23 |
20 22
|
eqtrd |
|- ( ph -> ( 1 ... N ) = ( ( 1 ... ( N - 1 ) ) u. { N } ) ) |
24 |
23
|
fveq2d |
|- ( ph -> ( _lcm ` ( 1 ... N ) ) = ( _lcm ` ( ( 1 ... ( N - 1 ) ) u. { N } ) ) ) |
25 |
|
fzssz |
|- ( 1 ... ( N - 1 ) ) C_ ZZ |
26 |
25
|
a1i |
|- ( ph -> ( 1 ... ( N - 1 ) ) C_ ZZ ) |
27 |
|
fzfi |
|- ( 1 ... ( N - 1 ) ) e. Fin |
28 |
27
|
a1i |
|- ( ph -> ( 1 ... ( N - 1 ) ) e. Fin ) |
29 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
30 |
1 29
|
syl |
|- ( ph -> N e. ZZ ) |
31 |
26 28 30
|
3jca |
|- ( ph -> ( ( 1 ... ( N - 1 ) ) C_ ZZ /\ ( 1 ... ( N - 1 ) ) e. Fin /\ N e. ZZ ) ) |
32 |
|
lcmfunsn |
|- ( ( ( 1 ... ( N - 1 ) ) C_ ZZ /\ ( 1 ... ( N - 1 ) ) e. Fin /\ N e. ZZ ) -> ( _lcm ` ( ( 1 ... ( N - 1 ) ) u. { N } ) ) = ( ( _lcm ` ( 1 ... ( N - 1 ) ) ) lcm N ) ) |
33 |
31 32
|
syl |
|- ( ph -> ( _lcm ` ( ( 1 ... ( N - 1 ) ) u. { N } ) ) = ( ( _lcm ` ( 1 ... ( N - 1 ) ) ) lcm N ) ) |
34 |
24 33
|
eqtrd |
|- ( ph -> ( _lcm ` ( 1 ... N ) ) = ( ( _lcm ` ( 1 ... ( N - 1 ) ) ) lcm N ) ) |