| Step |
Hyp |
Ref |
Expression |
| 1 |
|
5nn |
⊢ 5 ∈ ℕ |
| 2 |
1
|
a1i |
⊢ ( 5 ∈ ℕ → 5 ∈ ℕ ) |
| 3 |
2
|
lcmfunnnd |
⊢ ( 5 ∈ ℕ → ( lcm ‘ ( 1 ... 5 ) ) = ( ( lcm ‘ ( 1 ... ( 5 − 1 ) ) ) lcm 5 ) ) |
| 4 |
1 3
|
ax-mp |
⊢ ( lcm ‘ ( 1 ... 5 ) ) = ( ( lcm ‘ ( 1 ... ( 5 − 1 ) ) ) lcm 5 ) |
| 5 |
|
5m1e4 |
⊢ ( 5 − 1 ) = 4 |
| 6 |
5
|
oveq2i |
⊢ ( 1 ... ( 5 − 1 ) ) = ( 1 ... 4 ) |
| 7 |
6
|
fveq2i |
⊢ ( lcm ‘ ( 1 ... ( 5 − 1 ) ) ) = ( lcm ‘ ( 1 ... 4 ) ) |
| 8 |
7
|
oveq1i |
⊢ ( ( lcm ‘ ( 1 ... ( 5 − 1 ) ) ) lcm 5 ) = ( ( lcm ‘ ( 1 ... 4 ) ) lcm 5 ) |
| 9 |
|
lcm4un |
⊢ ( lcm ‘ ( 1 ... 4 ) ) = ; 1 2 |
| 10 |
9
|
oveq1i |
⊢ ( ( lcm ‘ ( 1 ... 4 ) ) lcm 5 ) = ( ; 1 2 lcm 5 ) |
| 11 |
8 10
|
eqtri |
⊢ ( ( lcm ‘ ( 1 ... ( 5 − 1 ) ) ) lcm 5 ) = ( ; 1 2 lcm 5 ) |
| 12 |
|
12lcm5e60 |
⊢ ( ; 1 2 lcm 5 ) = ; 6 0 |
| 13 |
4 11 12
|
3eqtri |
⊢ ( lcm ‘ ( 1 ... 5 ) ) = ; 6 0 |