| Step |
Hyp |
Ref |
Expression |
| 1 |
|
6nn |
⊢ 6 ∈ ℕ |
| 2 |
1
|
a1i |
⊢ ( 6 ∈ ℕ → 6 ∈ ℕ ) |
| 3 |
2
|
lcmfunnnd |
⊢ ( 6 ∈ ℕ → ( lcm ‘ ( 1 ... 6 ) ) = ( ( lcm ‘ ( 1 ... ( 6 − 1 ) ) ) lcm 6 ) ) |
| 4 |
1 3
|
ax-mp |
⊢ ( lcm ‘ ( 1 ... 6 ) ) = ( ( lcm ‘ ( 1 ... ( 6 − 1 ) ) ) lcm 6 ) |
| 5 |
|
6m1e5 |
⊢ ( 6 − 1 ) = 5 |
| 6 |
5
|
oveq2i |
⊢ ( 1 ... ( 6 − 1 ) ) = ( 1 ... 5 ) |
| 7 |
6
|
fveq2i |
⊢ ( lcm ‘ ( 1 ... ( 6 − 1 ) ) ) = ( lcm ‘ ( 1 ... 5 ) ) |
| 8 |
7
|
oveq1i |
⊢ ( ( lcm ‘ ( 1 ... ( 6 − 1 ) ) ) lcm 6 ) = ( ( lcm ‘ ( 1 ... 5 ) ) lcm 6 ) |
| 9 |
|
lcm5un |
⊢ ( lcm ‘ ( 1 ... 5 ) ) = ; 6 0 |
| 10 |
9
|
oveq1i |
⊢ ( ( lcm ‘ ( 1 ... 5 ) ) lcm 6 ) = ( ; 6 0 lcm 6 ) |
| 11 |
8 10
|
eqtri |
⊢ ( ( lcm ‘ ( 1 ... ( 6 − 1 ) ) ) lcm 6 ) = ( ; 6 0 lcm 6 ) |
| 12 |
|
60lcm6e60 |
⊢ ( ; 6 0 lcm 6 ) = ; 6 0 |
| 13 |
4 11 12
|
3eqtri |
⊢ ( lcm ‘ ( 1 ... 6 ) ) = ; 6 0 |