Step |
Hyp |
Ref |
Expression |
1 |
|
6nn |
⊢ 6 ∈ ℕ |
2 |
1
|
a1i |
⊢ ( 6 ∈ ℕ → 6 ∈ ℕ ) |
3 |
2
|
lcmfunnnd |
⊢ ( 6 ∈ ℕ → ( lcm ‘ ( 1 ... 6 ) ) = ( ( lcm ‘ ( 1 ... ( 6 − 1 ) ) ) lcm 6 ) ) |
4 |
1 3
|
ax-mp |
⊢ ( lcm ‘ ( 1 ... 6 ) ) = ( ( lcm ‘ ( 1 ... ( 6 − 1 ) ) ) lcm 6 ) |
5 |
|
6m1e5 |
⊢ ( 6 − 1 ) = 5 |
6 |
5
|
oveq2i |
⊢ ( 1 ... ( 6 − 1 ) ) = ( 1 ... 5 ) |
7 |
6
|
fveq2i |
⊢ ( lcm ‘ ( 1 ... ( 6 − 1 ) ) ) = ( lcm ‘ ( 1 ... 5 ) ) |
8 |
7
|
oveq1i |
⊢ ( ( lcm ‘ ( 1 ... ( 6 − 1 ) ) ) lcm 6 ) = ( ( lcm ‘ ( 1 ... 5 ) ) lcm 6 ) |
9 |
|
lcm5un |
⊢ ( lcm ‘ ( 1 ... 5 ) ) = ; 6 0 |
10 |
9
|
oveq1i |
⊢ ( ( lcm ‘ ( 1 ... 5 ) ) lcm 6 ) = ( ; 6 0 lcm 6 ) |
11 |
8 10
|
eqtri |
⊢ ( ( lcm ‘ ( 1 ... ( 6 − 1 ) ) ) lcm 6 ) = ( ; 6 0 lcm 6 ) |
12 |
|
60lcm6e60 |
⊢ ( ; 6 0 lcm 6 ) = ; 6 0 |
13 |
4 11 12
|
3eqtri |
⊢ ( lcm ‘ ( 1 ... 6 ) ) = ; 6 0 |