| Step |
Hyp |
Ref |
Expression |
| 1 |
|
5nn |
|- 5 e. NN |
| 2 |
1
|
a1i |
|- ( 5 e. NN -> 5 e. NN ) |
| 3 |
2
|
lcmfunnnd |
|- ( 5 e. NN -> ( _lcm ` ( 1 ... 5 ) ) = ( ( _lcm ` ( 1 ... ( 5 - 1 ) ) ) lcm 5 ) ) |
| 4 |
1 3
|
ax-mp |
|- ( _lcm ` ( 1 ... 5 ) ) = ( ( _lcm ` ( 1 ... ( 5 - 1 ) ) ) lcm 5 ) |
| 5 |
|
5m1e4 |
|- ( 5 - 1 ) = 4 |
| 6 |
5
|
oveq2i |
|- ( 1 ... ( 5 - 1 ) ) = ( 1 ... 4 ) |
| 7 |
6
|
fveq2i |
|- ( _lcm ` ( 1 ... ( 5 - 1 ) ) ) = ( _lcm ` ( 1 ... 4 ) ) |
| 8 |
7
|
oveq1i |
|- ( ( _lcm ` ( 1 ... ( 5 - 1 ) ) ) lcm 5 ) = ( ( _lcm ` ( 1 ... 4 ) ) lcm 5 ) |
| 9 |
|
lcm4un |
|- ( _lcm ` ( 1 ... 4 ) ) = ; 1 2 |
| 10 |
9
|
oveq1i |
|- ( ( _lcm ` ( 1 ... 4 ) ) lcm 5 ) = ( ; 1 2 lcm 5 ) |
| 11 |
8 10
|
eqtri |
|- ( ( _lcm ` ( 1 ... ( 5 - 1 ) ) ) lcm 5 ) = ( ; 1 2 lcm 5 ) |
| 12 |
|
12lcm5e60 |
|- ( ; 1 2 lcm 5 ) = ; 6 0 |
| 13 |
4 11 12
|
3eqtri |
|- ( _lcm ` ( 1 ... 5 ) ) = ; 6 0 |