Metamath Proof Explorer


Theorem ldillaut

Description: A lattice dilation is an automorphism. (Contributed by NM, 20-May-2012)

Ref Expression
Hypotheses ldillaut.h 𝐻 = ( LHyp ‘ 𝐾 )
ldillaut.i 𝐼 = ( LAut ‘ 𝐾 )
ldillaut.d 𝐷 = ( ( LDil ‘ 𝐾 ) ‘ 𝑊 )
Assertion ldillaut ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝐹𝐷 ) → 𝐹𝐼 )

Proof

Step Hyp Ref Expression
1 ldillaut.h 𝐻 = ( LHyp ‘ 𝐾 )
2 ldillaut.i 𝐼 = ( LAut ‘ 𝐾 )
3 ldillaut.d 𝐷 = ( ( LDil ‘ 𝐾 ) ‘ 𝑊 )
4 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
5 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
6 4 5 1 2 3 isldil ( ( 𝐾𝑉𝑊𝐻 ) → ( 𝐹𝐷 ↔ ( 𝐹𝐼 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( le ‘ 𝐾 ) 𝑊 → ( 𝐹𝑥 ) = 𝑥 ) ) ) )
7 6 simprbda ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝐹𝐷 ) → 𝐹𝐼 )