| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lt.1 |
⊢ 𝐴 ∈ ℝ |
| 2 |
|
lt.2 |
⊢ 𝐵 ∈ ℝ |
| 3 |
|
lt.3 |
⊢ 𝐶 ∈ ℝ |
| 4 |
2 3 1
|
letri |
⊢ ( ( 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴 ) → 𝐵 ≤ 𝐴 ) |
| 5 |
1 2
|
letri3i |
⊢ ( 𝐴 = 𝐵 ↔ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴 ) ) |
| 6 |
5
|
biimpri |
⊢ ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴 ) → 𝐴 = 𝐵 ) |
| 7 |
4 6
|
sylan2 |
⊢ ( ( 𝐴 ≤ 𝐵 ∧ ( 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴 ) ) → 𝐴 = 𝐵 ) |
| 8 |
7
|
3impb |
⊢ ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴 ) → 𝐴 = 𝐵 ) |
| 9 |
3 1 2
|
letri |
⊢ ( ( 𝐶 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) → 𝐶 ≤ 𝐵 ) |
| 10 |
2 3
|
letri3i |
⊢ ( 𝐵 = 𝐶 ↔ ( 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) |
| 11 |
10
|
biimpri |
⊢ ( ( 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) → 𝐵 = 𝐶 ) |
| 12 |
9 11
|
sylan2 |
⊢ ( ( 𝐵 ≤ 𝐶 ∧ ( 𝐶 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) → 𝐵 = 𝐶 ) |
| 13 |
12
|
3impb |
⊢ ( ( 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) → 𝐵 = 𝐶 ) |
| 14 |
13
|
3comr |
⊢ ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴 ) → 𝐵 = 𝐶 ) |
| 15 |
1 2 3
|
letri |
⊢ ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ) → 𝐴 ≤ 𝐶 ) |
| 16 |
1 3
|
letri3i |
⊢ ( 𝐴 = 𝐶 ↔ ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴 ) ) |
| 17 |
16
|
biimpri |
⊢ ( ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴 ) → 𝐴 = 𝐶 ) |
| 18 |
17
|
eqcomd |
⊢ ( ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴 ) → 𝐶 = 𝐴 ) |
| 19 |
15 18
|
stoic3 |
⊢ ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴 ) → 𝐶 = 𝐴 ) |
| 20 |
8 14 19
|
3jca |
⊢ ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴 ) → ( 𝐴 = 𝐵 ∧ 𝐵 = 𝐶 ∧ 𝐶 = 𝐴 ) ) |
| 21 |
1
|
eqlei |
⊢ ( 𝐴 = 𝐵 → 𝐴 ≤ 𝐵 ) |
| 22 |
2
|
eqlei |
⊢ ( 𝐵 = 𝐶 → 𝐵 ≤ 𝐶 ) |
| 23 |
3
|
eqlei |
⊢ ( 𝐶 = 𝐴 → 𝐶 ≤ 𝐴 ) |
| 24 |
21 22 23
|
3anim123i |
⊢ ( ( 𝐴 = 𝐵 ∧ 𝐵 = 𝐶 ∧ 𝐶 = 𝐴 ) → ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴 ) ) |
| 25 |
20 24
|
impbii |
⊢ ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴 ) ↔ ( 𝐴 = 𝐵 ∧ 𝐵 = 𝐶 ∧ 𝐶 = 𝐴 ) ) |