Metamath Proof Explorer


Theorem lmilmi

Description: Line mirroring is an involution. Theorem 10.5 of Schwabhauser p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019)

Ref Expression
Hypotheses ismid.p 𝑃 = ( Base ‘ 𝐺 )
ismid.d = ( dist ‘ 𝐺 )
ismid.i 𝐼 = ( Itv ‘ 𝐺 )
ismid.g ( 𝜑𝐺 ∈ TarskiG )
ismid.1 ( 𝜑𝐺 DimTarskiG≥ 2 )
lmif.m 𝑀 = ( ( lInvG ‘ 𝐺 ) ‘ 𝐷 )
lmif.l 𝐿 = ( LineG ‘ 𝐺 )
lmif.d ( 𝜑𝐷 ∈ ran 𝐿 )
lmicl.1 ( 𝜑𝐴𝑃 )
Assertion lmilmi ( 𝜑 → ( 𝑀 ‘ ( 𝑀𝐴 ) ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 ismid.p 𝑃 = ( Base ‘ 𝐺 )
2 ismid.d = ( dist ‘ 𝐺 )
3 ismid.i 𝐼 = ( Itv ‘ 𝐺 )
4 ismid.g ( 𝜑𝐺 ∈ TarskiG )
5 ismid.1 ( 𝜑𝐺 DimTarskiG≥ 2 )
6 lmif.m 𝑀 = ( ( lInvG ‘ 𝐺 ) ‘ 𝐷 )
7 lmif.l 𝐿 = ( LineG ‘ 𝐺 )
8 lmif.d ( 𝜑𝐷 ∈ ran 𝐿 )
9 lmicl.1 ( 𝜑𝐴𝑃 )
10 1 2 3 4 5 6 7 8 9 lmicl ( 𝜑 → ( 𝑀𝐴 ) ∈ 𝑃 )
11 eqidd ( 𝜑 → ( 𝑀𝐴 ) = ( 𝑀𝐴 ) )
12 1 2 3 4 5 6 7 8 9 10 11 lmicom ( 𝜑 → ( 𝑀 ‘ ( 𝑀𝐴 ) ) = 𝐴 )