Step |
Hyp |
Ref |
Expression |
1 |
|
ismid.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
ismid.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
ismid.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
ismid.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
5 |
|
ismid.1 |
⊢ ( 𝜑 → 𝐺 DimTarskiG≥ 2 ) |
6 |
|
lmif.m |
⊢ 𝑀 = ( ( lInvG ‘ 𝐺 ) ‘ 𝐷 ) |
7 |
|
lmif.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
8 |
|
lmif.d |
⊢ ( 𝜑 → 𝐷 ∈ ran 𝐿 ) |
9 |
|
lmicl.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
10 |
|
islmib.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
11 |
|
lmicom.1 |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) = 𝐵 ) |
12 |
1 2 3 4 5 9 10
|
midcom |
⊢ ( 𝜑 → ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) = ( 𝐵 ( midG ‘ 𝐺 ) 𝐴 ) ) |
13 |
11
|
eqcomd |
⊢ ( 𝜑 → 𝐵 = ( 𝑀 ‘ 𝐴 ) ) |
14 |
1 2 3 4 5 6 7 8 9 10
|
islmib |
⊢ ( 𝜑 → ( 𝐵 = ( 𝑀 ‘ 𝐴 ) ↔ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ) ) |
15 |
13 14
|
mpbid |
⊢ ( 𝜑 → ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ) |
16 |
15
|
simpld |
⊢ ( 𝜑 → ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ∈ 𝐷 ) |
17 |
12 16
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝐵 ( midG ‘ 𝐺 ) 𝐴 ) ∈ 𝐷 ) |
18 |
15
|
simprd |
⊢ ( 𝜑 → ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) |
19 |
18
|
orcomd |
⊢ ( 𝜑 → ( 𝐴 = 𝐵 ∨ 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐵 ) ) ) |
20 |
19
|
ord |
⊢ ( 𝜑 → ( ¬ 𝐴 = 𝐵 → 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐵 ) ) ) |
21 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → 𝐺 ∈ TarskiG ) |
22 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → 𝐴 ∈ 𝑃 ) |
23 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → 𝐵 ∈ 𝑃 ) |
24 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → ¬ 𝐴 = 𝐵 ) |
25 |
24
|
neqned |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → 𝐴 ≠ 𝐵 ) |
26 |
1 3 7 21 22 23 25
|
tglinecom |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → ( 𝐴 𝐿 𝐵 ) = ( 𝐵 𝐿 𝐴 ) ) |
27 |
26
|
breq2d |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐵 ) ↔ 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐵 𝐿 𝐴 ) ) ) |
28 |
27
|
pm5.74da |
⊢ ( 𝜑 → ( ( ¬ 𝐴 = 𝐵 → 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐵 ) ) ↔ ( ¬ 𝐴 = 𝐵 → 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐵 𝐿 𝐴 ) ) ) ) |
29 |
20 28
|
mpbid |
⊢ ( 𝜑 → ( ¬ 𝐴 = 𝐵 → 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐵 𝐿 𝐴 ) ) ) |
30 |
29
|
orrd |
⊢ ( 𝜑 → ( 𝐴 = 𝐵 ∨ 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐵 𝐿 𝐴 ) ) ) |
31 |
30
|
orcomd |
⊢ ( 𝜑 → ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐵 𝐿 𝐴 ) ∨ 𝐴 = 𝐵 ) ) |
32 |
|
eqcom |
⊢ ( 𝐴 = 𝐵 ↔ 𝐵 = 𝐴 ) |
33 |
32
|
orbi2i |
⊢ ( ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐵 𝐿 𝐴 ) ∨ 𝐴 = 𝐵 ) ↔ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐵 𝐿 𝐴 ) ∨ 𝐵 = 𝐴 ) ) |
34 |
31 33
|
sylib |
⊢ ( 𝜑 → ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐵 𝐿 𝐴 ) ∨ 𝐵 = 𝐴 ) ) |
35 |
1 2 3 4 5 6 7 8 10 9
|
islmib |
⊢ ( 𝜑 → ( 𝐴 = ( 𝑀 ‘ 𝐵 ) ↔ ( ( 𝐵 ( midG ‘ 𝐺 ) 𝐴 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐵 𝐿 𝐴 ) ∨ 𝐵 = 𝐴 ) ) ) ) |
36 |
17 34 35
|
mpbir2and |
⊢ ( 𝜑 → 𝐴 = ( 𝑀 ‘ 𝐵 ) ) |
37 |
36
|
eqcomd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐵 ) = 𝐴 ) |