| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ismid.p |
|
| 2 |
|
ismid.d |
|
| 3 |
|
ismid.i |
|
| 4 |
|
ismid.g |
|
| 5 |
|
ismid.1 |
|
| 6 |
|
lmif.m |
|
| 7 |
|
lmif.l |
|
| 8 |
|
lmif.d |
|
| 9 |
|
lmicl.1 |
|
| 10 |
|
islmib.b |
|
| 11 |
|
lmicom.1 |
|
| 12 |
1 2 3 4 5 9 10
|
midcom |
|
| 13 |
11
|
eqcomd |
|
| 14 |
1 2 3 4 5 6 7 8 9 10
|
islmib |
|
| 15 |
13 14
|
mpbid |
|
| 16 |
15
|
simpld |
|
| 17 |
12 16
|
eqeltrrd |
|
| 18 |
15
|
simprd |
|
| 19 |
18
|
orcomd |
|
| 20 |
19
|
ord |
|
| 21 |
4
|
adantr |
|
| 22 |
9
|
adantr |
|
| 23 |
10
|
adantr |
|
| 24 |
|
simpr |
|
| 25 |
24
|
neqned |
|
| 26 |
1 3 7 21 22 23 25
|
tglinecom |
|
| 27 |
26
|
breq2d |
|
| 28 |
27
|
pm5.74da |
|
| 29 |
20 28
|
mpbid |
|
| 30 |
29
|
orrd |
|
| 31 |
30
|
orcomd |
|
| 32 |
|
eqcom |
|
| 33 |
32
|
orbi2i |
|
| 34 |
31 33
|
sylib |
|
| 35 |
1 2 3 4 5 6 7 8 10 9
|
islmib |
|
| 36 |
17 34 35
|
mpbir2and |
|
| 37 |
36
|
eqcomd |
|