Description: The line mirroring function is an involution. Theorem 10.4 of Schwabhauser p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ismid.p | |
|
ismid.d | |
||
ismid.i | |
||
ismid.g | |
||
ismid.1 | |
||
lmif.m | |
||
lmif.l | |
||
lmif.d | |
||
lmicl.1 | |
||
islmib.b | |
||
lmicom.1 | |
||
Assertion | lmicom | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismid.p | |
|
2 | ismid.d | |
|
3 | ismid.i | |
|
4 | ismid.g | |
|
5 | ismid.1 | |
|
6 | lmif.m | |
|
7 | lmif.l | |
|
8 | lmif.d | |
|
9 | lmicl.1 | |
|
10 | islmib.b | |
|
11 | lmicom.1 | |
|
12 | 1 2 3 4 5 9 10 | midcom | |
13 | 11 | eqcomd | |
14 | 1 2 3 4 5 6 7 8 9 10 | islmib | |
15 | 13 14 | mpbid | |
16 | 15 | simpld | |
17 | 12 16 | eqeltrrd | |
18 | 15 | simprd | |
19 | 18 | orcomd | |
20 | 19 | ord | |
21 | 4 | adantr | |
22 | 9 | adantr | |
23 | 10 | adantr | |
24 | simpr | |
|
25 | 24 | neqned | |
26 | 1 3 7 21 22 23 25 | tglinecom | |
27 | 26 | breq2d | |
28 | 27 | pm5.74da | |
29 | 20 28 | mpbid | |
30 | 29 | orrd | |
31 | 30 | orcomd | |
32 | eqcom | |
|
33 | 32 | orbi2i | |
34 | 31 33 | sylib | |
35 | 1 2 3 4 5 6 7 8 10 9 | islmib | |
36 | 17 34 35 | mpbir2and | |
37 | 36 | eqcomd | |