Metamath Proof Explorer


Theorem lmicom

Description: The line mirroring function is an involution. Theorem 10.4 of Schwabhauser p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019)

Ref Expression
Hypotheses ismid.p P = Base G
ismid.d - ˙ = dist G
ismid.i I = Itv G
ismid.g φ G 𝒢 Tarski
ismid.1 φ G Dim 𝒢 2
lmif.m M = lInv 𝒢 G D
lmif.l L = Line 𝒢 G
lmif.d φ D ran L
lmicl.1 φ A P
islmib.b φ B P
lmicom.1 φ M A = B
Assertion lmicom φ M B = A

Proof

Step Hyp Ref Expression
1 ismid.p P = Base G
2 ismid.d - ˙ = dist G
3 ismid.i I = Itv G
4 ismid.g φ G 𝒢 Tarski
5 ismid.1 φ G Dim 𝒢 2
6 lmif.m M = lInv 𝒢 G D
7 lmif.l L = Line 𝒢 G
8 lmif.d φ D ran L
9 lmicl.1 φ A P
10 islmib.b φ B P
11 lmicom.1 φ M A = B
12 1 2 3 4 5 9 10 midcom φ A mid 𝒢 G B = B mid 𝒢 G A
13 11 eqcomd φ B = M A
14 1 2 3 4 5 6 7 8 9 10 islmib φ B = M A A mid 𝒢 G B D D 𝒢 G A L B A = B
15 13 14 mpbid φ A mid 𝒢 G B D D 𝒢 G A L B A = B
16 15 simpld φ A mid 𝒢 G B D
17 12 16 eqeltrrd φ B mid 𝒢 G A D
18 15 simprd φ D 𝒢 G A L B A = B
19 18 orcomd φ A = B D 𝒢 G A L B
20 19 ord φ ¬ A = B D 𝒢 G A L B
21 4 adantr φ ¬ A = B G 𝒢 Tarski
22 9 adantr φ ¬ A = B A P
23 10 adantr φ ¬ A = B B P
24 simpr φ ¬ A = B ¬ A = B
25 24 neqned φ ¬ A = B A B
26 1 3 7 21 22 23 25 tglinecom φ ¬ A = B A L B = B L A
27 26 breq2d φ ¬ A = B D 𝒢 G A L B D 𝒢 G B L A
28 27 pm5.74da φ ¬ A = B D 𝒢 G A L B ¬ A = B D 𝒢 G B L A
29 20 28 mpbid φ ¬ A = B D 𝒢 G B L A
30 29 orrd φ A = B D 𝒢 G B L A
31 30 orcomd φ D 𝒢 G B L A A = B
32 eqcom A = B B = A
33 32 orbi2i D 𝒢 G B L A A = B D 𝒢 G B L A B = A
34 31 33 sylib φ D 𝒢 G B L A B = A
35 1 2 3 4 5 6 7 8 10 9 islmib φ A = M B B mid 𝒢 G A D D 𝒢 G B L A B = A
36 17 34 35 mpbir2and φ A = M B
37 36 eqcomd φ M B = A