Metamath Proof Explorer


Theorem lmicom

Description: The line mirroring function is an involution. Theorem 10.4 of Schwabhauser p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019)

Ref Expression
Hypotheses ismid.p P=BaseG
ismid.d -˙=distG
ismid.i I=ItvG
ismid.g φG𝒢Tarski
ismid.1 φGDim𝒢2
lmif.m M=lInv𝒢GD
lmif.l L=Line𝒢G
lmif.d φDranL
lmicl.1 φAP
islmib.b φBP
lmicom.1 φMA=B
Assertion lmicom φMB=A

Proof

Step Hyp Ref Expression
1 ismid.p P=BaseG
2 ismid.d -˙=distG
3 ismid.i I=ItvG
4 ismid.g φG𝒢Tarski
5 ismid.1 φGDim𝒢2
6 lmif.m M=lInv𝒢GD
7 lmif.l L=Line𝒢G
8 lmif.d φDranL
9 lmicl.1 φAP
10 islmib.b φBP
11 lmicom.1 φMA=B
12 1 2 3 4 5 9 10 midcom φAmid𝒢GB=Bmid𝒢GA
13 11 eqcomd φB=MA
14 1 2 3 4 5 6 7 8 9 10 islmib φB=MAAmid𝒢GBDD𝒢GALBA=B
15 13 14 mpbid φAmid𝒢GBDD𝒢GALBA=B
16 15 simpld φAmid𝒢GBD
17 12 16 eqeltrrd φBmid𝒢GAD
18 15 simprd φD𝒢GALBA=B
19 18 orcomd φA=BD𝒢GALB
20 19 ord φ¬A=BD𝒢GALB
21 4 adantr φ¬A=BG𝒢Tarski
22 9 adantr φ¬A=BAP
23 10 adantr φ¬A=BBP
24 simpr φ¬A=B¬A=B
25 24 neqned φ¬A=BAB
26 1 3 7 21 22 23 25 tglinecom φ¬A=BALB=BLA
27 26 breq2d φ¬A=BD𝒢GALBD𝒢GBLA
28 27 pm5.74da φ¬A=BD𝒢GALB¬A=BD𝒢GBLA
29 20 28 mpbid φ¬A=BD𝒢GBLA
30 29 orrd φA=BD𝒢GBLA
31 30 orcomd φD𝒢GBLAA=B
32 eqcom A=BB=A
33 32 orbi2i D𝒢GBLAA=BD𝒢GBLAB=A
34 31 33 sylib φD𝒢GBLAB=A
35 1 2 3 4 5 6 7 8 10 9 islmib φA=MBBmid𝒢GADD𝒢GBLAB=A
36 17 34 35 mpbir2and φA=MB
37 36 eqcomd φMB=A