Metamath Proof Explorer


Theorem islmib

Description: Property of the line mirror. (Contributed by Thierry Arnoux, 11-Dec-2019)

Ref Expression
Hypotheses ismid.p P=BaseG
ismid.d -˙=distG
ismid.i I=ItvG
ismid.g φG𝒢Tarski
ismid.1 φGDim𝒢2
lmif.m M=lInv𝒢GD
lmif.l L=Line𝒢G
lmif.d φDranL
lmicl.1 φAP
islmib.b φBP
Assertion islmib φB=MAAmid𝒢GBDD𝒢GALBA=B

Proof

Step Hyp Ref Expression
1 ismid.p P=BaseG
2 ismid.d -˙=distG
3 ismid.i I=ItvG
4 ismid.g φG𝒢Tarski
5 ismid.1 φGDim𝒢2
6 lmif.m M=lInv𝒢GD
7 lmif.l L=Line𝒢G
8 lmif.d φDranL
9 lmicl.1 φAP
10 islmib.b φBP
11 df-lmi lInv𝒢=gVdranLine𝒢gaBasegιbBaseg|amid𝒢gbdd𝒢gaLine𝒢gba=b
12 fveq2 g=GLine𝒢g=Line𝒢G
13 12 7 eqtr4di g=GLine𝒢g=L
14 13 rneqd g=GranLine𝒢g=ranL
15 fveq2 g=GBaseg=BaseG
16 15 1 eqtr4di g=GBaseg=P
17 fveq2 g=Gmid𝒢g=mid𝒢G
18 17 oveqd g=Gamid𝒢gb=amid𝒢Gb
19 18 eleq1d g=Gamid𝒢gbdamid𝒢Gbd
20 eqidd g=Gd=d
21 fveq2 g=G𝒢g=𝒢G
22 13 oveqd g=GaLine𝒢gb=aLb
23 20 21 22 breq123d g=Gd𝒢gaLine𝒢gbd𝒢GaLb
24 23 orbi1d g=Gd𝒢gaLine𝒢gba=bd𝒢GaLba=b
25 19 24 anbi12d g=Gamid𝒢gbdd𝒢gaLine𝒢gba=bamid𝒢Gbdd𝒢GaLba=b
26 16 25 riotaeqbidv g=GιbBaseg|amid𝒢gbdd𝒢gaLine𝒢gba=b=ιbP|amid𝒢Gbdd𝒢GaLba=b
27 16 26 mpteq12dv g=GaBasegιbBaseg|amid𝒢gbdd𝒢gaLine𝒢gba=b=aPιbP|amid𝒢Gbdd𝒢GaLba=b
28 14 27 mpteq12dv g=GdranLine𝒢gaBasegιbBaseg|amid𝒢gbdd𝒢gaLine𝒢gba=b=dranLaPιbP|amid𝒢Gbdd𝒢GaLba=b
29 4 elexd φGV
30 7 fvexi LV
31 rnexg LVranLV
32 mptexg ranLVdranLaPιbP|amid𝒢Gbdd𝒢GaLba=bV
33 30 31 32 mp2b dranLaPιbP|amid𝒢Gbdd𝒢GaLba=bV
34 33 a1i φdranLaPιbP|amid𝒢Gbdd𝒢GaLba=bV
35 11 28 29 34 fvmptd3 φlInv𝒢G=dranLaPιbP|amid𝒢Gbdd𝒢GaLba=b
36 eleq2 d=Damid𝒢Gbdamid𝒢GbD
37 breq1 d=Dd𝒢GaLbD𝒢GaLb
38 37 orbi1d d=Dd𝒢GaLba=bD𝒢GaLba=b
39 36 38 anbi12d d=Damid𝒢Gbdd𝒢GaLba=bamid𝒢GbDD𝒢GaLba=b
40 39 riotabidv d=DιbP|amid𝒢Gbdd𝒢GaLba=b=ιbP|amid𝒢GbDD𝒢GaLba=b
41 40 mpteq2dv d=DaPιbP|amid𝒢Gbdd𝒢GaLba=b=aPιbP|amid𝒢GbDD𝒢GaLba=b
42 41 adantl φd=DaPιbP|amid𝒢Gbdd𝒢GaLba=b=aPιbP|amid𝒢GbDD𝒢GaLba=b
43 1 fvexi PV
44 43 mptex aPιbP|amid𝒢GbDD𝒢GaLba=bV
45 44 a1i φaPιbP|amid𝒢GbDD𝒢GaLba=bV
46 35 42 8 45 fvmptd φlInv𝒢GD=aPιbP|amid𝒢GbDD𝒢GaLba=b
47 6 46 eqtrid φM=aPιbP|amid𝒢GbDD𝒢GaLba=b
48 oveq1 a=Aamid𝒢Gb=Amid𝒢Gb
49 48 eleq1d a=Aamid𝒢GbDAmid𝒢GbD
50 oveq1 a=AaLb=ALb
51 50 breq2d a=AD𝒢GaLbD𝒢GALb
52 eqeq1 a=Aa=bA=b
53 51 52 orbi12d a=AD𝒢GaLba=bD𝒢GALbA=b
54 49 53 anbi12d a=Aamid𝒢GbDD𝒢GaLba=bAmid𝒢GbDD𝒢GALbA=b
55 54 riotabidv a=AιbP|amid𝒢GbDD𝒢GaLba=b=ιbP|Amid𝒢GbDD𝒢GALbA=b
56 55 adantl φa=AιbP|amid𝒢GbDD𝒢GaLba=b=ιbP|Amid𝒢GbDD𝒢GALbA=b
57 1 2 3 4 5 7 8 9 lmieu φ∃!bPAmid𝒢GbDD𝒢GALbA=b
58 riotacl ∃!bPAmid𝒢GbDD𝒢GALbA=bιbP|Amid𝒢GbDD𝒢GALbA=bP
59 57 58 syl φιbP|Amid𝒢GbDD𝒢GALbA=bP
60 47 56 9 59 fvmptd φMA=ιbP|Amid𝒢GbDD𝒢GALbA=b
61 60 eqeq2d φB=MAB=ιbP|Amid𝒢GbDD𝒢GALbA=b
62 oveq2 b=BAmid𝒢Gb=Amid𝒢GB
63 62 eleq1d b=BAmid𝒢GbDAmid𝒢GBD
64 oveq2 b=BALb=ALB
65 64 breq2d b=BD𝒢GALbD𝒢GALB
66 eqeq2 b=BA=bA=B
67 65 66 orbi12d b=BD𝒢GALbA=bD𝒢GALBA=B
68 63 67 anbi12d b=BAmid𝒢GbDD𝒢GALbA=bAmid𝒢GBDD𝒢GALBA=B
69 68 riota2 BP∃!bPAmid𝒢GbDD𝒢GALbA=bAmid𝒢GBDD𝒢GALBA=BιbP|Amid𝒢GbDD𝒢GALbA=b=B
70 10 57 69 syl2anc φAmid𝒢GBDD𝒢GALBA=BιbP|Amid𝒢GbDD𝒢GALbA=b=B
71 eqcom B=ιbP|Amid𝒢GbDD𝒢GALbA=bιbP|Amid𝒢GbDD𝒢GALbA=b=B
72 70 71 bitr4di φAmid𝒢GBDD𝒢GALBA=BB=ιbP|Amid𝒢GbDD𝒢GALbA=b
73 61 72 bitr4d φB=MAAmid𝒢GBDD𝒢GALBA=B