Description: The value of a linear Hilbert space functional at zero is zero. Remark in Beran p. 99. (Contributed by NM, 25-Apr-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lnfn0 | ⊢ ( 𝑇 ∈ LinFn → ( 𝑇 ‘ 0ℎ ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 | ⊢ ( 𝑇 = if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) → ( 𝑇 ‘ 0ℎ ) = ( if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) ‘ 0ℎ ) ) | |
| 2 | 1 | eqeq1d | ⊢ ( 𝑇 = if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) → ( ( 𝑇 ‘ 0ℎ ) = 0 ↔ ( if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) ‘ 0ℎ ) = 0 ) ) |
| 3 | 0lnfn | ⊢ ( ℋ × { 0 } ) ∈ LinFn | |
| 4 | 3 | elimel | ⊢ if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) ∈ LinFn |
| 5 | 4 | lnfn0i | ⊢ ( if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) ‘ 0ℎ ) = 0 |
| 6 | 2 5 | dedth | ⊢ ( 𝑇 ∈ LinFn → ( 𝑇 ‘ 0ℎ ) = 0 ) |