Metamath Proof Explorer
Description: The difference of two linear operators is linear. (Contributed by NM, 27-Jul-2006) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
lnopco.1 |
⊢ 𝑆 ∈ LinOp |
|
|
lnopco.2 |
⊢ 𝑇 ∈ LinOp |
|
Assertion |
lnophdi |
⊢ ( 𝑆 −op 𝑇 ) ∈ LinOp |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lnopco.1 |
⊢ 𝑆 ∈ LinOp |
| 2 |
|
lnopco.2 |
⊢ 𝑇 ∈ LinOp |
| 3 |
1
|
lnopfi |
⊢ 𝑆 : ℋ ⟶ ℋ |
| 4 |
2
|
lnopfi |
⊢ 𝑇 : ℋ ⟶ ℋ |
| 5 |
3 4
|
honegsubi |
⊢ ( 𝑆 +op ( - 1 ·op 𝑇 ) ) = ( 𝑆 −op 𝑇 ) |
| 6 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 7 |
2
|
lnopmi |
⊢ ( - 1 ∈ ℂ → ( - 1 ·op 𝑇 ) ∈ LinOp ) |
| 8 |
6 7
|
ax-mp |
⊢ ( - 1 ·op 𝑇 ) ∈ LinOp |
| 9 |
1 8
|
lnophsi |
⊢ ( 𝑆 +op ( - 1 ·op 𝑇 ) ) ∈ LinOp |
| 10 |
5 9
|
eqeltrri |
⊢ ( 𝑆 −op 𝑇 ) ∈ LinOp |