Description: The difference of two linear operators is linear. (Contributed by NM, 27-Jul-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lnopco.1 | |- S e. LinOp |
|
| lnopco.2 | |- T e. LinOp |
||
| Assertion | lnophdi | |- ( S -op T ) e. LinOp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnopco.1 | |- S e. LinOp |
|
| 2 | lnopco.2 | |- T e. LinOp |
|
| 3 | 1 | lnopfi | |- S : ~H --> ~H |
| 4 | 2 | lnopfi | |- T : ~H --> ~H |
| 5 | 3 4 | honegsubi | |- ( S +op ( -u 1 .op T ) ) = ( S -op T ) |
| 6 | neg1cn | |- -u 1 e. CC |
|
| 7 | 2 | lnopmi | |- ( -u 1 e. CC -> ( -u 1 .op T ) e. LinOp ) |
| 8 | 6 7 | ax-mp | |- ( -u 1 .op T ) e. LinOp |
| 9 | 1 8 | lnophsi | |- ( S +op ( -u 1 .op T ) ) e. LinOp |
| 10 | 5 9 | eqeltrri | |- ( S -op T ) e. LinOp |