| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hodseq.2 |
|- S : ~H --> ~H |
| 2 |
|
hodseq.3 |
|- T : ~H --> ~H |
| 3 |
|
neg1cn |
|- -u 1 e. CC |
| 4 |
|
homulcl |
|- ( ( -u 1 e. CC /\ T : ~H --> ~H ) -> ( -u 1 .op T ) : ~H --> ~H ) |
| 5 |
3 2 4
|
mp2an |
|- ( -u 1 .op T ) : ~H --> ~H |
| 6 |
|
hosval |
|- ( ( S : ~H --> ~H /\ ( -u 1 .op T ) : ~H --> ~H /\ x e. ~H ) -> ( ( S +op ( -u 1 .op T ) ) ` x ) = ( ( S ` x ) +h ( ( -u 1 .op T ) ` x ) ) ) |
| 7 |
1 5 6
|
mp3an12 |
|- ( x e. ~H -> ( ( S +op ( -u 1 .op T ) ) ` x ) = ( ( S ` x ) +h ( ( -u 1 .op T ) ` x ) ) ) |
| 8 |
1
|
ffvelcdmi |
|- ( x e. ~H -> ( S ` x ) e. ~H ) |
| 9 |
2
|
ffvelcdmi |
|- ( x e. ~H -> ( T ` x ) e. ~H ) |
| 10 |
|
hvsubval |
|- ( ( ( S ` x ) e. ~H /\ ( T ` x ) e. ~H ) -> ( ( S ` x ) -h ( T ` x ) ) = ( ( S ` x ) +h ( -u 1 .h ( T ` x ) ) ) ) |
| 11 |
8 9 10
|
syl2anc |
|- ( x e. ~H -> ( ( S ` x ) -h ( T ` x ) ) = ( ( S ` x ) +h ( -u 1 .h ( T ` x ) ) ) ) |
| 12 |
|
homval |
|- ( ( -u 1 e. CC /\ T : ~H --> ~H /\ x e. ~H ) -> ( ( -u 1 .op T ) ` x ) = ( -u 1 .h ( T ` x ) ) ) |
| 13 |
3 2 12
|
mp3an12 |
|- ( x e. ~H -> ( ( -u 1 .op T ) ` x ) = ( -u 1 .h ( T ` x ) ) ) |
| 14 |
13
|
oveq2d |
|- ( x e. ~H -> ( ( S ` x ) +h ( ( -u 1 .op T ) ` x ) ) = ( ( S ` x ) +h ( -u 1 .h ( T ` x ) ) ) ) |
| 15 |
11 14
|
eqtr4d |
|- ( x e. ~H -> ( ( S ` x ) -h ( T ` x ) ) = ( ( S ` x ) +h ( ( -u 1 .op T ) ` x ) ) ) |
| 16 |
7 15
|
eqtr4d |
|- ( x e. ~H -> ( ( S +op ( -u 1 .op T ) ) ` x ) = ( ( S ` x ) -h ( T ` x ) ) ) |
| 17 |
|
hodval |
|- ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ x e. ~H ) -> ( ( S -op T ) ` x ) = ( ( S ` x ) -h ( T ` x ) ) ) |
| 18 |
1 2 17
|
mp3an12 |
|- ( x e. ~H -> ( ( S -op T ) ` x ) = ( ( S ` x ) -h ( T ` x ) ) ) |
| 19 |
16 18
|
eqtr4d |
|- ( x e. ~H -> ( ( S +op ( -u 1 .op T ) ) ` x ) = ( ( S -op T ) ` x ) ) |
| 20 |
19
|
rgen |
|- A. x e. ~H ( ( S +op ( -u 1 .op T ) ) ` x ) = ( ( S -op T ) ` x ) |
| 21 |
1 5
|
hoaddcli |
|- ( S +op ( -u 1 .op T ) ) : ~H --> ~H |
| 22 |
1 2
|
hosubcli |
|- ( S -op T ) : ~H --> ~H |
| 23 |
21 22
|
hoeqi |
|- ( A. x e. ~H ( ( S +op ( -u 1 .op T ) ) ` x ) = ( ( S -op T ) ` x ) <-> ( S +op ( -u 1 .op T ) ) = ( S -op T ) ) |
| 24 |
20 23
|
mpbi |
|- ( S +op ( -u 1 .op T ) ) = ( S -op T ) |