Metamath Proof Explorer


Theorem lnrring

Description: Left-Noetherian rings are rings. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Assertion lnrring ( 𝐴 ∈ LNoeR → 𝐴 ∈ Ring )

Proof

Step Hyp Ref Expression
1 islnr ( 𝐴 ∈ LNoeR ↔ ( 𝐴 ∈ Ring ∧ ( ringLMod ‘ 𝐴 ) ∈ LNoeM ) )
2 1 simplbi ( 𝐴 ∈ LNoeR → 𝐴 ∈ Ring )