| Step |
Hyp |
Ref |
Expression |
| 1 |
|
logimcld.1 |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 2 |
|
logimcld.2 |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
| 3 |
1 2
|
logcld |
⊢ ( 𝜑 → ( log ‘ 𝑋 ) ∈ ℂ ) |
| 4 |
3
|
imcld |
⊢ ( 𝜑 → ( ℑ ‘ ( log ‘ 𝑋 ) ) ∈ ℝ ) |
| 5 |
1 2
|
logimcld |
⊢ ( 𝜑 → ( - π < ( ℑ ‘ ( log ‘ 𝑋 ) ) ∧ ( ℑ ‘ ( log ‘ 𝑋 ) ) ≤ π ) ) |
| 6 |
5
|
simpld |
⊢ ( 𝜑 → - π < ( ℑ ‘ ( log ‘ 𝑋 ) ) ) |
| 7 |
5
|
simprd |
⊢ ( 𝜑 → ( ℑ ‘ ( log ‘ 𝑋 ) ) ≤ π ) |
| 8 |
|
pire |
⊢ π ∈ ℝ |
| 9 |
8
|
renegcli |
⊢ - π ∈ ℝ |
| 10 |
9
|
rexri |
⊢ - π ∈ ℝ* |
| 11 |
|
elioc2 |
⊢ ( ( - π ∈ ℝ* ∧ π ∈ ℝ ) → ( ( ℑ ‘ ( log ‘ 𝑋 ) ) ∈ ( - π (,] π ) ↔ ( ( ℑ ‘ ( log ‘ 𝑋 ) ) ∈ ℝ ∧ - π < ( ℑ ‘ ( log ‘ 𝑋 ) ) ∧ ( ℑ ‘ ( log ‘ 𝑋 ) ) ≤ π ) ) ) |
| 12 |
10 8 11
|
mp2an |
⊢ ( ( ℑ ‘ ( log ‘ 𝑋 ) ) ∈ ( - π (,] π ) ↔ ( ( ℑ ‘ ( log ‘ 𝑋 ) ) ∈ ℝ ∧ - π < ( ℑ ‘ ( log ‘ 𝑋 ) ) ∧ ( ℑ ‘ ( log ‘ 𝑋 ) ) ≤ π ) ) |
| 13 |
4 6 7 12
|
syl3anbrc |
⊢ ( 𝜑 → ( ℑ ‘ ( log ‘ 𝑋 ) ) ∈ ( - π (,] π ) ) |