Metamath Proof Explorer


Theorem lppthon

Description: A loop (which is an edge at index J ) induces a path of length 1 from a vertex to itself in a hypergraph. (Contributed by AV, 1-Feb-2021)

Ref Expression
Hypothesis lppthon.i 𝐼 = ( iEdg ‘ 𝐺 )
Assertion lppthon ( ( 𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ ( 𝐼𝐽 ) = { 𝐴 } ) → ⟨“ 𝐽 ”⟩ ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐴 ) ⟨“ 𝐴 𝐴 ”⟩ )

Proof

Step Hyp Ref Expression
1 lppthon.i 𝐼 = ( iEdg ‘ 𝐺 )
2 eqid ⟨“ 𝐴 𝐴 ”⟩ = ⟨“ 𝐴 𝐴 ”⟩
3 eqid ⟨“ 𝐽 ”⟩ = ⟨“ 𝐽 ”⟩
4 1 lpvtx ( ( 𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ ( 𝐼𝐽 ) = { 𝐴 } ) → 𝐴 ∈ ( Vtx ‘ 𝐺 ) )
5 simpl3 ( ( ( 𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ ( 𝐼𝐽 ) = { 𝐴 } ) ∧ 𝐴 = 𝐴 ) → ( 𝐼𝐽 ) = { 𝐴 } )
6 eqid 𝐴 = 𝐴
7 eqneqall ( 𝐴 = 𝐴 → ( 𝐴𝐴 → { 𝐴 , 𝐴 } ⊆ ( 𝐼𝐽 ) ) )
8 6 7 ax-mp ( 𝐴𝐴 → { 𝐴 , 𝐴 } ⊆ ( 𝐼𝐽 ) )
9 8 adantl ( ( ( 𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ ( 𝐼𝐽 ) = { 𝐴 } ) ∧ 𝐴𝐴 ) → { 𝐴 , 𝐴 } ⊆ ( 𝐼𝐽 ) )
10 eqid ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 )
11 2 3 4 4 5 9 10 1 1pthond ( ( 𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ ( 𝐼𝐽 ) = { 𝐴 } ) → ⟨“ 𝐽 ”⟩ ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐴 ) ⟨“ 𝐴 𝐴 ”⟩ )