| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lppthon.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
| 2 |
|
eqid |
⊢ 〈“ 𝐴 𝐴 ”〉 = 〈“ 𝐴 𝐴 ”〉 |
| 3 |
|
eqid |
⊢ 〈“ 𝐽 ”〉 = 〈“ 𝐽 ”〉 |
| 4 |
1
|
lpvtx |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ ( 𝐼 ‘ 𝐽 ) = { 𝐴 } ) → 𝐴 ∈ ( Vtx ‘ 𝐺 ) ) |
| 5 |
|
simpl3 |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ ( 𝐼 ‘ 𝐽 ) = { 𝐴 } ) ∧ 𝐴 = 𝐴 ) → ( 𝐼 ‘ 𝐽 ) = { 𝐴 } ) |
| 6 |
|
eqid |
⊢ 𝐴 = 𝐴 |
| 7 |
|
eqneqall |
⊢ ( 𝐴 = 𝐴 → ( 𝐴 ≠ 𝐴 → { 𝐴 , 𝐴 } ⊆ ( 𝐼 ‘ 𝐽 ) ) ) |
| 8 |
6 7
|
ax-mp |
⊢ ( 𝐴 ≠ 𝐴 → { 𝐴 , 𝐴 } ⊆ ( 𝐼 ‘ 𝐽 ) ) |
| 9 |
8
|
adantl |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ ( 𝐼 ‘ 𝐽 ) = { 𝐴 } ) ∧ 𝐴 ≠ 𝐴 ) → { 𝐴 , 𝐴 } ⊆ ( 𝐼 ‘ 𝐽 ) ) |
| 10 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
| 11 |
2 3 4 4 5 9 10 1
|
1pthond |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ ( 𝐼 ‘ 𝐽 ) = { 𝐴 } ) → 〈“ 𝐽 ”〉 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐴 ) 〈“ 𝐴 𝐴 ”〉 ) |