| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1wlkd.p | ⊢ 𝑃  =  〈“ 𝑋 𝑌 ”〉 | 
						
							| 2 |  | 1wlkd.f | ⊢ 𝐹  =  〈“ 𝐽 ”〉 | 
						
							| 3 |  | 1wlkd.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 4 |  | 1wlkd.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 5 |  | 1wlkd.l | ⊢ ( ( 𝜑  ∧  𝑋  =  𝑌 )  →  ( 𝐼 ‘ 𝐽 )  =  { 𝑋 } ) | 
						
							| 6 |  | 1wlkd.j | ⊢ ( ( 𝜑  ∧  𝑋  ≠  𝑌 )  →  { 𝑋 ,  𝑌 }  ⊆  ( 𝐼 ‘ 𝐽 ) ) | 
						
							| 7 |  | 1wlkd.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 8 |  | 1wlkd.i | ⊢ 𝐼  =  ( iEdg ‘ 𝐺 ) | 
						
							| 9 | 1 2 3 4 5 6 7 8 | 1wlkd | ⊢ ( 𝜑  →  𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | 
						
							| 10 | 1 | fveq1i | ⊢ ( 𝑃 ‘ 0 )  =  ( 〈“ 𝑋 𝑌 ”〉 ‘ 0 ) | 
						
							| 11 |  | s2fv0 | ⊢ ( 𝑋  ∈  𝑉  →  ( 〈“ 𝑋 𝑌 ”〉 ‘ 0 )  =  𝑋 ) | 
						
							| 12 | 10 11 | eqtrid | ⊢ ( 𝑋  ∈  𝑉  →  ( 𝑃 ‘ 0 )  =  𝑋 ) | 
						
							| 13 | 3 12 | syl | ⊢ ( 𝜑  →  ( 𝑃 ‘ 0 )  =  𝑋 ) | 
						
							| 14 | 2 | fveq2i | ⊢ ( ♯ ‘ 𝐹 )  =  ( ♯ ‘ 〈“ 𝐽 ”〉 ) | 
						
							| 15 |  | s1len | ⊢ ( ♯ ‘ 〈“ 𝐽 ”〉 )  =  1 | 
						
							| 16 | 14 15 | eqtri | ⊢ ( ♯ ‘ 𝐹 )  =  1 | 
						
							| 17 | 1 16 | fveq12i | ⊢ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  ( 〈“ 𝑋 𝑌 ”〉 ‘ 1 ) | 
						
							| 18 |  | s2fv1 | ⊢ ( 𝑌  ∈  𝑉  →  ( 〈“ 𝑋 𝑌 ”〉 ‘ 1 )  =  𝑌 ) | 
						
							| 19 | 4 18 | syl | ⊢ ( 𝜑  →  ( 〈“ 𝑋 𝑌 ”〉 ‘ 1 )  =  𝑌 ) | 
						
							| 20 | 17 19 | eqtrid | ⊢ ( 𝜑  →  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝑌 ) | 
						
							| 21 |  | wlkv | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  ( 𝐺  ∈  V  ∧  𝐹  ∈  V  ∧  𝑃  ∈  V ) ) | 
						
							| 22 |  | 3simpc | ⊢ ( ( 𝐺  ∈  V  ∧  𝐹  ∈  V  ∧  𝑃  ∈  V )  →  ( 𝐹  ∈  V  ∧  𝑃  ∈  V ) ) | 
						
							| 23 | 9 21 22 | 3syl | ⊢ ( 𝜑  →  ( 𝐹  ∈  V  ∧  𝑃  ∈  V ) ) | 
						
							| 24 | 3 4 23 | jca31 | ⊢ ( 𝜑  →  ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V ) ) ) | 
						
							| 25 | 7 | iswlkon | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V ) )  →  ( 𝐹 ( 𝑋 ( WalksOn ‘ 𝐺 ) 𝑌 ) 𝑃  ↔  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  𝑋  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝑌 ) ) ) | 
						
							| 26 | 24 25 | syl | ⊢ ( 𝜑  →  ( 𝐹 ( 𝑋 ( WalksOn ‘ 𝐺 ) 𝑌 ) 𝑃  ↔  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  𝑋  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝑌 ) ) ) | 
						
							| 27 | 9 13 20 26 | mpbir3and | ⊢ ( 𝜑  →  𝐹 ( 𝑋 ( WalksOn ‘ 𝐺 ) 𝑌 ) 𝑃 ) | 
						
							| 28 | 1 2 3 4 5 6 7 8 | 1trld | ⊢ ( 𝜑  →  𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) | 
						
							| 29 | 7 | istrlson | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V ) )  →  ( 𝐹 ( 𝑋 ( TrailsOn ‘ 𝐺 ) 𝑌 ) 𝑃  ↔  ( 𝐹 ( 𝑋 ( WalksOn ‘ 𝐺 ) 𝑌 ) 𝑃  ∧  𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) ) ) | 
						
							| 30 | 24 29 | syl | ⊢ ( 𝜑  →  ( 𝐹 ( 𝑋 ( TrailsOn ‘ 𝐺 ) 𝑌 ) 𝑃  ↔  ( 𝐹 ( 𝑋 ( WalksOn ‘ 𝐺 ) 𝑌 ) 𝑃  ∧  𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) ) ) | 
						
							| 31 | 27 28 30 | mpbir2and | ⊢ ( 𝜑  →  𝐹 ( 𝑋 ( TrailsOn ‘ 𝐺 ) 𝑌 ) 𝑃 ) | 
						
							| 32 | 1 2 3 4 5 6 7 8 | 1pthd | ⊢ ( 𝜑  →  𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) | 
						
							| 33 | 3 | adantl | ⊢ ( ( ( 𝐹  ∈  V  ∧  𝑃  ∈  V )  ∧  𝜑 )  →  𝑋  ∈  𝑉 ) | 
						
							| 34 | 4 | adantl | ⊢ ( ( ( 𝐹  ∈  V  ∧  𝑃  ∈  V )  ∧  𝜑 )  →  𝑌  ∈  𝑉 ) | 
						
							| 35 |  | simpl | ⊢ ( ( ( 𝐹  ∈  V  ∧  𝑃  ∈  V )  ∧  𝜑 )  →  ( 𝐹  ∈  V  ∧  𝑃  ∈  V ) ) | 
						
							| 36 | 33 34 35 | jca31 | ⊢ ( ( ( 𝐹  ∈  V  ∧  𝑃  ∈  V )  ∧  𝜑 )  →  ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V ) ) ) | 
						
							| 37 | 36 | ex | ⊢ ( ( 𝐹  ∈  V  ∧  𝑃  ∈  V )  →  ( 𝜑  →  ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V ) ) ) ) | 
						
							| 38 | 21 22 37 | 3syl | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  ( 𝜑  →  ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V ) ) ) ) | 
						
							| 39 | 9 38 | mpcom | ⊢ ( 𝜑  →  ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V ) ) ) | 
						
							| 40 | 7 | ispthson | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V ) )  →  ( 𝐹 ( 𝑋 ( PathsOn ‘ 𝐺 ) 𝑌 ) 𝑃  ↔  ( 𝐹 ( 𝑋 ( TrailsOn ‘ 𝐺 ) 𝑌 ) 𝑃  ∧  𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ) ) | 
						
							| 41 | 39 40 | syl | ⊢ ( 𝜑  →  ( 𝐹 ( 𝑋 ( PathsOn ‘ 𝐺 ) 𝑌 ) 𝑃  ↔  ( 𝐹 ( 𝑋 ( TrailsOn ‘ 𝐺 ) 𝑌 ) 𝑃  ∧  𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ) ) | 
						
							| 42 | 31 32 41 | mpbir2and | ⊢ ( 𝜑  →  𝐹 ( 𝑋 ( PathsOn ‘ 𝐺 ) 𝑌 ) 𝑃 ) |