Description: Division of both sides of 'less than' by a positive number. (Contributed by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ltmul1d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| ltmul1d.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| ltmul1d.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | ||
| Assertion | ltdiv1d | ⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ ( 𝐴 / 𝐶 ) < ( 𝐵 / 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltmul1d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | ltmul1d.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | ltmul1d.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | |
| 4 | 3 | rpregt0d | ⊢ ( 𝜑 → ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) |
| 5 | ltdiv1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 / 𝐶 ) < ( 𝐵 / 𝐶 ) ) ) | |
| 6 | 1 2 4 5 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ ( 𝐴 / 𝐶 ) < ( 𝐵 / 𝐶 ) ) ) |