| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltexprlem.1 |
⊢ 𝐶 = { 𝑥 ∣ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) } |
| 2 |
1
|
eqabri |
⊢ ( 𝑥 ∈ 𝐶 ↔ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) |
| 3 |
|
elprnq |
⊢ ( ( 𝐵 ∈ P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ( 𝑦 +Q 𝑥 ) ∈ Q ) |
| 4 |
|
addnqf |
⊢ +Q : ( Q × Q ) ⟶ Q |
| 5 |
4
|
fdmi |
⊢ dom +Q = ( Q × Q ) |
| 6 |
|
0nnq |
⊢ ¬ ∅ ∈ Q |
| 7 |
5 6
|
ndmovrcl |
⊢ ( ( 𝑦 +Q 𝑥 ) ∈ Q → ( 𝑦 ∈ Q ∧ 𝑥 ∈ Q ) ) |
| 8 |
3 7
|
syl |
⊢ ( ( 𝐵 ∈ P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ( 𝑦 ∈ Q ∧ 𝑥 ∈ Q ) ) |
| 9 |
|
ltaddnq |
⊢ ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) → 𝑥 <Q ( 𝑥 +Q 𝑦 ) ) |
| 10 |
9
|
ancoms |
⊢ ( ( 𝑦 ∈ Q ∧ 𝑥 ∈ Q ) → 𝑥 <Q ( 𝑥 +Q 𝑦 ) ) |
| 11 |
|
addcomnq |
⊢ ( 𝑥 +Q 𝑦 ) = ( 𝑦 +Q 𝑥 ) |
| 12 |
10 11
|
breqtrdi |
⊢ ( ( 𝑦 ∈ Q ∧ 𝑥 ∈ Q ) → 𝑥 <Q ( 𝑦 +Q 𝑥 ) ) |
| 13 |
|
prcdnq |
⊢ ( ( 𝐵 ∈ P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ( 𝑥 <Q ( 𝑦 +Q 𝑥 ) → 𝑥 ∈ 𝐵 ) ) |
| 14 |
12 13
|
syl5 |
⊢ ( ( 𝐵 ∈ P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ( ( 𝑦 ∈ Q ∧ 𝑥 ∈ Q ) → 𝑥 ∈ 𝐵 ) ) |
| 15 |
8 14
|
mpd |
⊢ ( ( 𝐵 ∈ P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
| 16 |
15
|
ex |
⊢ ( 𝐵 ∈ P → ( ( 𝑦 +Q 𝑥 ) ∈ 𝐵 → 𝑥 ∈ 𝐵 ) ) |
| 17 |
16
|
adantld |
⊢ ( 𝐵 ∈ P → ( ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) ) |
| 18 |
17
|
exlimdv |
⊢ ( 𝐵 ∈ P → ( ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) ) |
| 19 |
2 18
|
biimtrid |
⊢ ( 𝐵 ∈ P → ( 𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐵 ) ) |
| 20 |
19
|
ssrdv |
⊢ ( 𝐵 ∈ P → 𝐶 ⊆ 𝐵 ) |
| 21 |
|
prpssnq |
⊢ ( 𝐵 ∈ P → 𝐵 ⊊ Q ) |
| 22 |
20 21
|
sspsstrd |
⊢ ( 𝐵 ∈ P → 𝐶 ⊊ Q ) |