Description: The reciprocal of both sides of 'less than'. (Contributed by NM, 15-Sep-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ltplus1.1 | ⊢ 𝐴 ∈ ℝ | |
| prodgt0.2 | ⊢ 𝐵 ∈ ℝ | ||
| Assertion | ltreci | ⊢ ( ( 0 < 𝐴 ∧ 0 < 𝐵 ) → ( 𝐴 < 𝐵 ↔ ( 1 / 𝐵 ) < ( 1 / 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltplus1.1 | ⊢ 𝐴 ∈ ℝ | |
| 2 | prodgt0.2 | ⊢ 𝐵 ∈ ℝ | |
| 3 | ltrec | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 𝐴 < 𝐵 ↔ ( 1 / 𝐵 ) < ( 1 / 𝐴 ) ) ) | |
| 4 | 2 3 | mpanr1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ 0 < 𝐵 ) → ( 𝐴 < 𝐵 ↔ ( 1 / 𝐵 ) < ( 1 / 𝐴 ) ) ) |
| 5 | 1 4 | mpanl1 | ⊢ ( ( 0 < 𝐴 ∧ 0 < 𝐵 ) → ( 𝐴 < 𝐵 ↔ ( 1 / 𝐵 ) < ( 1 / 𝐴 ) ) ) |