| Step |
Hyp |
Ref |
Expression |
| 1 |
|
matcpmric.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 2 |
|
matcpmric.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 3 |
|
matcpmric.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
| 4 |
|
matcpmric.s |
⊢ 𝑆 = ( 𝑁 ConstPolyMat 𝑅 ) |
| 5 |
|
matcpmric.u |
⊢ 𝑈 = ( 𝐶 ↾s 𝑆 ) |
| 6 |
|
eqid |
⊢ ( 𝑁 matToPolyMat 𝑅 ) = ( 𝑁 matToPolyMat 𝑅 ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
| 8 |
4 6 1 7 2 3 5
|
m2cpmrngiso |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑁 matToPolyMat 𝑅 ) ∈ ( 𝐴 RingIso 𝑈 ) ) |
| 9 |
8
|
ne0d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝐴 RingIso 𝑈 ) ≠ ∅ ) |
| 10 |
|
brric |
⊢ ( 𝐴 ≃𝑟 𝑈 ↔ ( 𝐴 RingIso 𝑈 ) ≠ ∅ ) |
| 11 |
9 10
|
sylibr |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝐴 ≃𝑟 𝑈 ) |