| Step | Hyp | Ref | Expression | 
						
							| 1 |  | matcpmric.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | matcpmric.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 3 |  | matcpmric.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 4 |  | matcpmric.s | ⊢ 𝑆  =  ( 𝑁  ConstPolyMat  𝑅 ) | 
						
							| 5 |  | matcpmric.u | ⊢ 𝑈  =  ( 𝐶  ↾s  𝑆 ) | 
						
							| 6 |  | eqid | ⊢ ( 𝑁  matToPolyMat  𝑅 )  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 7 |  | eqid | ⊢ ( Base ‘ 𝐴 )  =  ( Base ‘ 𝐴 ) | 
						
							| 8 | 4 6 1 7 2 3 5 | m2cpmrngiso | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑁  matToPolyMat  𝑅 )  ∈  ( 𝐴  RingIso  𝑈 ) ) | 
						
							| 9 | 8 | ne0d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝐴  RingIso  𝑈 )  ≠  ∅ ) | 
						
							| 10 |  | brric | ⊢ ( 𝐴  ≃𝑟  𝑈  ↔  ( 𝐴  RingIso  𝑈 )  ≠  ∅ ) | 
						
							| 11 | 9 10 | sylibr | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝐴  ≃𝑟  𝑈 ) |