Metamath Proof Explorer


Theorem matcpmric

Description: The ring of matrices over a commutative ring is isomorphic to the ring of scalar matrices over the same ring. (Contributed by AV, 30-Dec-2019)

Ref Expression
Hypotheses matcpmric.a 𝐴 = ( 𝑁 Mat 𝑅 )
matcpmric.p 𝑃 = ( Poly1𝑅 )
matcpmric.c 𝐶 = ( 𝑁 Mat 𝑃 )
matcpmric.s 𝑆 = ( 𝑁 ConstPolyMat 𝑅 )
matcpmric.u 𝑈 = ( 𝐶s 𝑆 )
Assertion matcpmric ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝐴𝑟 𝑈 )

Proof

Step Hyp Ref Expression
1 matcpmric.a 𝐴 = ( 𝑁 Mat 𝑅 )
2 matcpmric.p 𝑃 = ( Poly1𝑅 )
3 matcpmric.c 𝐶 = ( 𝑁 Mat 𝑃 )
4 matcpmric.s 𝑆 = ( 𝑁 ConstPolyMat 𝑅 )
5 matcpmric.u 𝑈 = ( 𝐶s 𝑆 )
6 eqid ( 𝑁 matToPolyMat 𝑅 ) = ( 𝑁 matToPolyMat 𝑅 )
7 eqid ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 )
8 4 6 1 7 2 3 5 m2cpmrngiso ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑁 matToPolyMat 𝑅 ) ∈ ( 𝐴 RingIso 𝑈 ) )
9 8 ne0d ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝐴 RingIso 𝑈 ) ≠ ∅ )
10 brric ( 𝐴𝑟 𝑈 ↔ ( 𝐴 RingIso 𝑈 ) ≠ ∅ )
11 9 10 sylibr ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝐴𝑟 𝑈 )