| Step | Hyp | Ref | Expression | 
						
							| 1 |  | matcpmric.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | matcpmric.p |  |-  P = ( Poly1 ` R ) | 
						
							| 3 |  | matcpmric.c |  |-  C = ( N Mat P ) | 
						
							| 4 |  | matcpmric.s |  |-  S = ( N ConstPolyMat R ) | 
						
							| 5 |  | matcpmric.u |  |-  U = ( C |`s S ) | 
						
							| 6 |  | eqid |  |-  ( N matToPolyMat R ) = ( N matToPolyMat R ) | 
						
							| 7 |  | eqid |  |-  ( Base ` A ) = ( Base ` A ) | 
						
							| 8 | 4 6 1 7 2 3 5 | m2cpmrngiso |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( N matToPolyMat R ) e. ( A RingIso U ) ) | 
						
							| 9 | 8 | ne0d |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( A RingIso U ) =/= (/) ) | 
						
							| 10 |  | brric |  |-  ( A ~=r U <-> ( A RingIso U ) =/= (/) ) | 
						
							| 11 | 9 10 | sylibr |  |-  ( ( N e. Fin /\ R e. CRing ) -> A ~=r U ) |