| Step |
Hyp |
Ref |
Expression |
| 1 |
|
matcpmric.a |
|- A = ( N Mat R ) |
| 2 |
|
matcpmric.p |
|- P = ( Poly1 ` R ) |
| 3 |
|
matcpmric.c |
|- C = ( N Mat P ) |
| 4 |
|
matcpmric.s |
|- S = ( N ConstPolyMat R ) |
| 5 |
|
matcpmric.u |
|- U = ( C |`s S ) |
| 6 |
|
eqid |
|- ( N matToPolyMat R ) = ( N matToPolyMat R ) |
| 7 |
|
eqid |
|- ( Base ` A ) = ( Base ` A ) |
| 8 |
4 6 1 7 2 3 5
|
m2cpmrngiso |
|- ( ( N e. Fin /\ R e. CRing ) -> ( N matToPolyMat R ) e. ( A RingIso U ) ) |
| 9 |
8
|
ne0d |
|- ( ( N e. Fin /\ R e. CRing ) -> ( A RingIso U ) =/= (/) ) |
| 10 |
|
brric |
|- ( A ~=r U <-> ( A RingIso U ) =/= (/) ) |
| 11 |
9 10
|
sylibr |
|- ( ( N e. Fin /\ R e. CRing ) -> A ~=r U ) |