| Step | Hyp | Ref | Expression | 
						
							| 1 |  | m2cpmfo.s |  |-  S = ( N ConstPolyMat R ) | 
						
							| 2 |  | m2cpmfo.t |  |-  T = ( N matToPolyMat R ) | 
						
							| 3 |  | m2cpmfo.a |  |-  A = ( N Mat R ) | 
						
							| 4 |  | m2cpmfo.k |  |-  K = ( Base ` A ) | 
						
							| 5 |  | m2cpmrngiso.p |  |-  P = ( Poly1 ` R ) | 
						
							| 6 |  | m2cpmrngiso.c |  |-  C = ( N Mat P ) | 
						
							| 7 |  | m2cpmrngiso.u |  |-  U = ( C |`s S ) | 
						
							| 8 | 1 2 3 4 5 6 7 | m2cpmrhm |  |-  ( ( N e. Fin /\ R e. CRing ) -> T e. ( A RingHom U ) ) | 
						
							| 9 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 10 | 1 2 3 4 | m2cpmf1o |  |-  ( ( N e. Fin /\ R e. Ring ) -> T : K -1-1-onto-> S ) | 
						
							| 11 |  | eqid |  |-  ( Base ` C ) = ( Base ` C ) | 
						
							| 12 | 1 5 6 11 | cpmatpmat |  |-  ( ( N e. Fin /\ R e. Ring /\ m e. S ) -> m e. ( Base ` C ) ) | 
						
							| 13 | 12 | 3expia |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( m e. S -> m e. ( Base ` C ) ) ) | 
						
							| 14 | 13 | ssrdv |  |-  ( ( N e. Fin /\ R e. Ring ) -> S C_ ( Base ` C ) ) | 
						
							| 15 | 7 11 | ressbas2 |  |-  ( S C_ ( Base ` C ) -> S = ( Base ` U ) ) | 
						
							| 16 | 14 15 | syl |  |-  ( ( N e. Fin /\ R e. Ring ) -> S = ( Base ` U ) ) | 
						
							| 17 | 16 | eqcomd |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( Base ` U ) = S ) | 
						
							| 18 | 17 | f1oeq3d |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( T : K -1-1-onto-> ( Base ` U ) <-> T : K -1-1-onto-> S ) ) | 
						
							| 19 | 10 18 | mpbird |  |-  ( ( N e. Fin /\ R e. Ring ) -> T : K -1-1-onto-> ( Base ` U ) ) | 
						
							| 20 | 9 19 | sylan2 |  |-  ( ( N e. Fin /\ R e. CRing ) -> T : K -1-1-onto-> ( Base ` U ) ) | 
						
							| 21 |  | eqid |  |-  ( Base ` U ) = ( Base ` U ) | 
						
							| 22 | 4 21 | isrim |  |-  ( T e. ( A RingIso U ) <-> ( T e. ( A RingHom U ) /\ T : K -1-1-onto-> ( Base ` U ) ) ) | 
						
							| 23 | 8 20 22 | sylanbrc |  |-  ( ( N e. Fin /\ R e. CRing ) -> T e. ( A RingIso U ) ) |