| Step |
Hyp |
Ref |
Expression |
| 1 |
|
m2cpmfo.s |
⊢ 𝑆 = ( 𝑁 ConstPolyMat 𝑅 ) |
| 2 |
|
m2cpmfo.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
| 3 |
|
m2cpmfo.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 4 |
|
m2cpmfo.k |
⊢ 𝐾 = ( Base ‘ 𝐴 ) |
| 5 |
|
m2cpmrngiso.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 6 |
|
m2cpmrngiso.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
| 7 |
|
m2cpmrngiso.u |
⊢ 𝑈 = ( 𝐶 ↾s 𝑆 ) |
| 8 |
1 2 3 4 5 6 7
|
m2cpmrhm |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑇 ∈ ( 𝐴 RingHom 𝑈 ) ) |
| 9 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
| 10 |
1 2 3 4
|
m2cpmf1o |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 : 𝐾 –1-1-onto→ 𝑆 ) |
| 11 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 12 |
1 5 6 11
|
cpmatpmat |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑚 ∈ 𝑆 ) → 𝑚 ∈ ( Base ‘ 𝐶 ) ) |
| 13 |
12
|
3expia |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑚 ∈ 𝑆 → 𝑚 ∈ ( Base ‘ 𝐶 ) ) ) |
| 14 |
13
|
ssrdv |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑆 ⊆ ( Base ‘ 𝐶 ) ) |
| 15 |
7 11
|
ressbas2 |
⊢ ( 𝑆 ⊆ ( Base ‘ 𝐶 ) → 𝑆 = ( Base ‘ 𝑈 ) ) |
| 16 |
14 15
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑆 = ( Base ‘ 𝑈 ) ) |
| 17 |
16
|
eqcomd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( Base ‘ 𝑈 ) = 𝑆 ) |
| 18 |
17
|
f1oeq3d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑇 : 𝐾 –1-1-onto→ ( Base ‘ 𝑈 ) ↔ 𝑇 : 𝐾 –1-1-onto→ 𝑆 ) ) |
| 19 |
10 18
|
mpbird |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 : 𝐾 –1-1-onto→ ( Base ‘ 𝑈 ) ) |
| 20 |
9 19
|
sylan2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑇 : 𝐾 –1-1-onto→ ( Base ‘ 𝑈 ) ) |
| 21 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
| 22 |
4 21
|
isrim |
⊢ ( 𝑇 ∈ ( 𝐴 RingIso 𝑈 ) ↔ ( 𝑇 ∈ ( 𝐴 RingHom 𝑈 ) ∧ 𝑇 : 𝐾 –1-1-onto→ ( Base ‘ 𝑈 ) ) ) |
| 23 |
8 20 22
|
sylanbrc |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑇 ∈ ( 𝐴 RingIso 𝑈 ) ) |