Description: The matrix transformation is a 1-1 function from the matrices onto the constant polynomial matrices. (Contributed by AV, 19-Nov-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | m2cpmfo.s | ⊢ 𝑆 = ( 𝑁 ConstPolyMat 𝑅 ) | |
m2cpmfo.t | ⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) | ||
m2cpmfo.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | ||
m2cpmfo.k | ⊢ 𝐾 = ( Base ‘ 𝐴 ) | ||
Assertion | m2cpmf1o | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 : 𝐾 –1-1-onto→ 𝑆 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | m2cpmfo.s | ⊢ 𝑆 = ( 𝑁 ConstPolyMat 𝑅 ) | |
2 | m2cpmfo.t | ⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) | |
3 | m2cpmfo.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
4 | m2cpmfo.k | ⊢ 𝐾 = ( Base ‘ 𝐴 ) | |
5 | 1 2 3 4 | m2cpmf1 | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 : 𝐾 –1-1→ 𝑆 ) |
6 | 1 2 3 4 | m2cpmfo | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 : 𝐾 –onto→ 𝑆 ) |
7 | df-f1o | ⊢ ( 𝑇 : 𝐾 –1-1-onto→ 𝑆 ↔ ( 𝑇 : 𝐾 –1-1→ 𝑆 ∧ 𝑇 : 𝐾 –onto→ 𝑆 ) ) | |
8 | 5 6 7 | sylanbrc | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 : 𝐾 –1-1-onto→ 𝑆 ) |