Metamath Proof Explorer


Theorem m2cpmf1o

Description: The matrix transformation is a 1-1 function from the matrices onto the constant polynomial matrices. (Contributed by AV, 19-Nov-2019)

Ref Expression
Hypotheses m2cpmfo.s 𝑆 = ( 𝑁 ConstPolyMat 𝑅 )
m2cpmfo.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
m2cpmfo.a 𝐴 = ( 𝑁 Mat 𝑅 )
m2cpmfo.k 𝐾 = ( Base ‘ 𝐴 )
Assertion m2cpmf1o ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 : 𝐾1-1-onto𝑆 )

Proof

Step Hyp Ref Expression
1 m2cpmfo.s 𝑆 = ( 𝑁 ConstPolyMat 𝑅 )
2 m2cpmfo.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
3 m2cpmfo.a 𝐴 = ( 𝑁 Mat 𝑅 )
4 m2cpmfo.k 𝐾 = ( Base ‘ 𝐴 )
5 1 2 3 4 m2cpmf1 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 : 𝐾1-1𝑆 )
6 1 2 3 4 m2cpmfo ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 : 𝐾onto𝑆 )
7 df-f1o ( 𝑇 : 𝐾1-1-onto𝑆 ↔ ( 𝑇 : 𝐾1-1𝑆𝑇 : 𝐾onto𝑆 ) )
8 5 6 7 sylanbrc ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 : 𝐾1-1-onto𝑆 )