Metamath Proof Explorer


Theorem m2cpmf1o

Description: The matrix transformation is a 1-1 function from the matrices onto the constant polynomial matrices. (Contributed by AV, 19-Nov-2019)

Ref Expression
Hypotheses m2cpmfo.s S=NConstPolyMatR
m2cpmfo.t T=NmatToPolyMatR
m2cpmfo.a A=NMatR
m2cpmfo.k K=BaseA
Assertion m2cpmf1o NFinRRingT:K1-1 ontoS

Proof

Step Hyp Ref Expression
1 m2cpmfo.s S=NConstPolyMatR
2 m2cpmfo.t T=NmatToPolyMatR
3 m2cpmfo.a A=NMatR
4 m2cpmfo.k K=BaseA
5 1 2 3 4 m2cpmf1 NFinRRingT:K1-1S
6 1 2 3 4 m2cpmfo NFinRRingT:KontoS
7 df-f1o T:K1-1 ontoST:K1-1ST:KontoS
8 5 6 7 sylanbrc NFinRRingT:K1-1 ontoS