| Step |
Hyp |
Ref |
Expression |
| 1 |
|
m2cpmfo.s |
|
| 2 |
|
m2cpmfo.t |
|
| 3 |
|
m2cpmfo.a |
|
| 4 |
|
m2cpmfo.k |
|
| 5 |
1 2 3 4
|
m2cpmf |
|
| 6 |
|
eqid |
|
| 7 |
|
simplll |
|
| 8 |
|
simpllr |
|
| 9 |
|
eqid |
|
| 10 |
|
eqid |
|
| 11 |
|
eqid |
|
| 12 |
|
simp2 |
|
| 13 |
|
simp3 |
|
| 14 |
|
eqid |
|
| 15 |
1 14 9 11
|
cpmatpmat |
|
| 16 |
15
|
ad4ant124 |
|
| 17 |
16
|
3ad2ant1 |
|
| 18 |
9 10 11 12 13 17
|
matecld |
|
| 19 |
|
0nn0 |
|
| 20 |
|
eqid |
|
| 21 |
20 10 14 6
|
coe1fvalcl |
|
| 22 |
18 19 21
|
sylancl |
|
| 23 |
3 6 4 7 8 22
|
matbas2d |
|
| 24 |
23
|
fmpttd |
|
| 25 |
|
simpr |
|
| 26 |
24 25
|
ffvelcdmd |
|
| 27 |
|
fveq2 |
|
| 28 |
27
|
eqeq2d |
|
| 29 |
28
|
adantl |
|
| 30 |
|
eqid |
|
| 31 |
30 1
|
cpm2mfval |
|
| 32 |
31
|
fveq1d |
|
| 33 |
32
|
3adant3 |
|
| 34 |
33
|
eqcomd |
|
| 35 |
34
|
fveq2d |
|
| 36 |
1 30 2
|
m2cpminvid2 |
|
| 37 |
35 36
|
eqtrd |
|
| 38 |
37
|
3expa |
|
| 39 |
38
|
eqcomd |
|
| 40 |
26 29 39
|
rspcedvd |
|
| 41 |
40
|
ralrimiva |
|
| 42 |
|
dffo3 |
|
| 43 |
5 41 42
|
sylanbrc |
|