Metamath Proof Explorer


Theorem m2cpmfo

Description: The matrix transformation is a function from the matrices onto the constant polynomial matrices. (Contributed by AV, 19-Nov-2019) (Proof shortened by AV, 28-Nov-2019)

Ref Expression
Hypotheses m2cpmfo.s S=NConstPolyMatR
m2cpmfo.t T=NmatToPolyMatR
m2cpmfo.a A=NMatR
m2cpmfo.k K=BaseA
Assertion m2cpmfo NFinRRingT:KontoS

Proof

Step Hyp Ref Expression
1 m2cpmfo.s S=NConstPolyMatR
2 m2cpmfo.t T=NmatToPolyMatR
3 m2cpmfo.a A=NMatR
4 m2cpmfo.k K=BaseA
5 1 2 3 4 m2cpmf NFinRRingT:KS
6 eqid BaseR=BaseR
7 simplll NFinRRingxSmSNFin
8 simpllr NFinRRingxSmSRRing
9 eqid NMatPoly1R=NMatPoly1R
10 eqid BasePoly1R=BasePoly1R
11 eqid BaseNMatPoly1R=BaseNMatPoly1R
12 simp2 NFinRRingxSmSiNjNiN
13 simp3 NFinRRingxSmSiNjNjN
14 eqid Poly1R=Poly1R
15 1 14 9 11 cpmatpmat NFinRRingmSmBaseNMatPoly1R
16 15 ad4ant124 NFinRRingxSmSmBaseNMatPoly1R
17 16 3ad2ant1 NFinRRingxSmSiNjNmBaseNMatPoly1R
18 9 10 11 12 13 17 matecld NFinRRingxSmSiNjNimjBasePoly1R
19 0nn0 00
20 eqid coe1imj=coe1imj
21 20 10 14 6 coe1fvalcl imjBasePoly1R00coe1imj0BaseR
22 18 19 21 sylancl NFinRRingxSmSiNjNcoe1imj0BaseR
23 3 6 4 7 8 22 matbas2d NFinRRingxSmSiN,jNcoe1imj0K
24 23 fmpttd NFinRRingxSmSiN,jNcoe1imj0:SK
25 simpr NFinRRingxSxS
26 24 25 ffvelcdmd NFinRRingxSmSiN,jNcoe1imj0xK
27 fveq2 c=mSiN,jNcoe1imj0xTc=TmSiN,jNcoe1imj0x
28 27 eqeq2d c=mSiN,jNcoe1imj0xx=Tcx=TmSiN,jNcoe1imj0x
29 28 adantl NFinRRingxSc=mSiN,jNcoe1imj0xx=Tcx=TmSiN,jNcoe1imj0x
30 eqid NcPolyMatToMatR=NcPolyMatToMatR
31 30 1 cpm2mfval NFinRRingNcPolyMatToMatR=mSiN,jNcoe1imj0
32 31 fveq1d NFinRRingNcPolyMatToMatRx=mSiN,jNcoe1imj0x
33 32 3adant3 NFinRRingxSNcPolyMatToMatRx=mSiN,jNcoe1imj0x
34 33 eqcomd NFinRRingxSmSiN,jNcoe1imj0x=NcPolyMatToMatRx
35 34 fveq2d NFinRRingxSTmSiN,jNcoe1imj0x=TNcPolyMatToMatRx
36 1 30 2 m2cpminvid2 NFinRRingxSTNcPolyMatToMatRx=x
37 35 36 eqtrd NFinRRingxSTmSiN,jNcoe1imj0x=x
38 37 3expa NFinRRingxSTmSiN,jNcoe1imj0x=x
39 38 eqcomd NFinRRingxSx=TmSiN,jNcoe1imj0x
40 26 29 39 rspcedvd NFinRRingxScKx=Tc
41 40 ralrimiva NFinRRingxScKx=Tc
42 dffo3 T:KontoST:KSxScKx=Tc
43 5 41 42 sylanbrc NFinRRingT:KontoS