Description: The matrix transformation is a function from the matrices onto the constant polynomial matrices. (Contributed by AV, 19-Nov-2019) (Proof shortened by AV, 28-Nov-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | m2cpmfo.s | |
|
m2cpmfo.t | |
||
m2cpmfo.a | |
||
m2cpmfo.k | |
||
Assertion | m2cpmfo | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | m2cpmfo.s | |
|
2 | m2cpmfo.t | |
|
3 | m2cpmfo.a | |
|
4 | m2cpmfo.k | |
|
5 | 1 2 3 4 | m2cpmf | |
6 | eqid | |
|
7 | simplll | |
|
8 | simpllr | |
|
9 | eqid | |
|
10 | eqid | |
|
11 | eqid | |
|
12 | simp2 | |
|
13 | simp3 | |
|
14 | eqid | |
|
15 | 1 14 9 11 | cpmatpmat | |
16 | 15 | ad4ant124 | |
17 | 16 | 3ad2ant1 | |
18 | 9 10 11 12 13 17 | matecld | |
19 | 0nn0 | |
|
20 | eqid | |
|
21 | 20 10 14 6 | coe1fvalcl | |
22 | 18 19 21 | sylancl | |
23 | 3 6 4 7 8 22 | matbas2d | |
24 | 23 | fmpttd | |
25 | simpr | |
|
26 | 24 25 | ffvelcdmd | |
27 | fveq2 | |
|
28 | 27 | eqeq2d | |
29 | 28 | adantl | |
30 | eqid | |
|
31 | 30 1 | cpm2mfval | |
32 | 31 | fveq1d | |
33 | 32 | 3adant3 | |
34 | 33 | eqcomd | |
35 | 34 | fveq2d | |
36 | 1 30 2 | m2cpminvid2 | |
37 | 35 36 | eqtrd | |
38 | 37 | 3expa | |
39 | 38 | eqcomd | |
40 | 26 29 39 | rspcedvd | |
41 | 40 | ralrimiva | |
42 | dffo3 | |
|
43 | 5 41 42 | sylanbrc | |