Description: The matrix transformation is a 1-1 function from the matrices onto the constant polynomial matrices. (Contributed by AV, 19-Nov-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | m2cpmfo.s | |- S = ( N ConstPolyMat R ) |
|
m2cpmfo.t | |- T = ( N matToPolyMat R ) |
||
m2cpmfo.a | |- A = ( N Mat R ) |
||
m2cpmfo.k | |- K = ( Base ` A ) |
||
Assertion | m2cpmf1o | |- ( ( N e. Fin /\ R e. Ring ) -> T : K -1-1-onto-> S ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | m2cpmfo.s | |- S = ( N ConstPolyMat R ) |
|
2 | m2cpmfo.t | |- T = ( N matToPolyMat R ) |
|
3 | m2cpmfo.a | |- A = ( N Mat R ) |
|
4 | m2cpmfo.k | |- K = ( Base ` A ) |
|
5 | 1 2 3 4 | m2cpmf1 | |- ( ( N e. Fin /\ R e. Ring ) -> T : K -1-1-> S ) |
6 | 1 2 3 4 | m2cpmfo | |- ( ( N e. Fin /\ R e. Ring ) -> T : K -onto-> S ) |
7 | df-f1o | |- ( T : K -1-1-onto-> S <-> ( T : K -1-1-> S /\ T : K -onto-> S ) ) |
|
8 | 5 6 7 | sylanbrc | |- ( ( N e. Fin /\ R e. Ring ) -> T : K -1-1-onto-> S ) |