Metamath Proof Explorer


Theorem m2cpmf1o

Description: The matrix transformation is a 1-1 function from the matrices onto the constant polynomial matrices. (Contributed by AV, 19-Nov-2019)

Ref Expression
Hypotheses m2cpmfo.s
|- S = ( N ConstPolyMat R )
m2cpmfo.t
|- T = ( N matToPolyMat R )
m2cpmfo.a
|- A = ( N Mat R )
m2cpmfo.k
|- K = ( Base ` A )
Assertion m2cpmf1o
|- ( ( N e. Fin /\ R e. Ring ) -> T : K -1-1-onto-> S )

Proof

Step Hyp Ref Expression
1 m2cpmfo.s
 |-  S = ( N ConstPolyMat R )
2 m2cpmfo.t
 |-  T = ( N matToPolyMat R )
3 m2cpmfo.a
 |-  A = ( N Mat R )
4 m2cpmfo.k
 |-  K = ( Base ` A )
5 1 2 3 4 m2cpmf1
 |-  ( ( N e. Fin /\ R e. Ring ) -> T : K -1-1-> S )
6 1 2 3 4 m2cpmfo
 |-  ( ( N e. Fin /\ R e. Ring ) -> T : K -onto-> S )
7 df-f1o
 |-  ( T : K -1-1-onto-> S <-> ( T : K -1-1-> S /\ T : K -onto-> S ) )
8 5 6 7 sylanbrc
 |-  ( ( N e. Fin /\ R e. Ring ) -> T : K -1-1-onto-> S )