Metamath Proof Explorer


Theorem m2cpmf1

Description: The matrix transformation is a 1-1 function from the matrices to the constant polynomial matrices. (Contributed by AV, 18-Nov-2019)

Ref Expression
Hypotheses m2cpm.s S=NConstPolyMatR
m2cpm.t T=NmatToPolyMatR
m2cpm.a A=NMatR
m2cpm.b B=BaseA
Assertion m2cpmf1 NFinRRingT:B1-1S

Proof

Step Hyp Ref Expression
1 m2cpm.s S=NConstPolyMatR
2 m2cpm.t T=NmatToPolyMatR
3 m2cpm.a A=NMatR
4 m2cpm.b B=BaseA
5 eqid Poly1R=Poly1R
6 eqid NMatPoly1R=NMatPoly1R
7 eqid BaseNMatPoly1R=BaseNMatPoly1R
8 2 3 4 5 6 7 mat2pmatf1 NFinRRingT:B1-1BaseNMatPoly1R
9 1 2 3 4 m2cpmf NFinRRingT:BS
10 9 frnd NFinRRingranTS
11 f1ssr T:B1-1BaseNMatPoly1RranTST:B1-1S
12 8 10 11 syl2anc NFinRRingT:B1-1S