Step |
Hyp |
Ref |
Expression |
1 |
|
m2cpm.s |
⊢ 𝑆 = ( 𝑁 ConstPolyMat 𝑅 ) |
2 |
|
m2cpm.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
3 |
|
m2cpm.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
4 |
|
m2cpm.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
5 |
|
m2cpmghm.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
6 |
|
m2cpmghm.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
7 |
|
m2cpmghm.u |
⊢ 𝑈 = ( 𝐶 ↾s 𝑆 ) |
8 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
9 |
3
|
matring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
10 |
8 9
|
sylan2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝐴 ∈ Ring ) |
11 |
1 5 6
|
cpmatsrgpmat |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑆 ∈ ( SubRing ‘ 𝐶 ) ) |
12 |
8 11
|
sylan2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑆 ∈ ( SubRing ‘ 𝐶 ) ) |
13 |
7
|
subrgring |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝐶 ) → 𝑈 ∈ Ring ) |
14 |
12 13
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑈 ∈ Ring ) |
15 |
1 2 3 4 5 6 7
|
m2cpmghm |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 ∈ ( 𝐴 GrpHom 𝑈 ) ) |
16 |
8 15
|
sylan2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑇 ∈ ( 𝐴 GrpHom 𝑈 ) ) |
17 |
1 2 3 4 5 6 7
|
m2cpmmhm |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑇 ∈ ( ( mulGrp ‘ 𝐴 ) MndHom ( mulGrp ‘ 𝑈 ) ) ) |
18 |
16 17
|
jca |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑇 ∈ ( 𝐴 GrpHom 𝑈 ) ∧ 𝑇 ∈ ( ( mulGrp ‘ 𝐴 ) MndHom ( mulGrp ‘ 𝑈 ) ) ) ) |
19 |
|
eqid |
⊢ ( mulGrp ‘ 𝐴 ) = ( mulGrp ‘ 𝐴 ) |
20 |
|
eqid |
⊢ ( mulGrp ‘ 𝑈 ) = ( mulGrp ‘ 𝑈 ) |
21 |
19 20
|
isrhm |
⊢ ( 𝑇 ∈ ( 𝐴 RingHom 𝑈 ) ↔ ( ( 𝐴 ∈ Ring ∧ 𝑈 ∈ Ring ) ∧ ( 𝑇 ∈ ( 𝐴 GrpHom 𝑈 ) ∧ 𝑇 ∈ ( ( mulGrp ‘ 𝐴 ) MndHom ( mulGrp ‘ 𝑈 ) ) ) ) ) |
22 |
10 14 18 21
|
syl21anbrc |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑇 ∈ ( 𝐴 RingHom 𝑈 ) ) |