| Step | Hyp | Ref | Expression | 
						
							| 1 |  | m2cpm.s | ⊢ 𝑆  =  ( 𝑁  ConstPolyMat  𝑅 ) | 
						
							| 2 |  | m2cpm.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 3 |  | m2cpm.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 4 |  | m2cpm.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 5 |  | m2cpmghm.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 6 |  | m2cpmghm.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 7 |  | m2cpmghm.u | ⊢ 𝑈  =  ( 𝐶  ↾s  𝑆 ) | 
						
							| 8 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 9 | 3 | matring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  Ring ) | 
						
							| 10 | 8 9 | sylan2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝐴  ∈  Ring ) | 
						
							| 11 | 1 5 6 | cpmatsrgpmat | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑆  ∈  ( SubRing ‘ 𝐶 ) ) | 
						
							| 12 | 8 11 | sylan2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑆  ∈  ( SubRing ‘ 𝐶 ) ) | 
						
							| 13 | 7 | subrgring | ⊢ ( 𝑆  ∈  ( SubRing ‘ 𝐶 )  →  𝑈  ∈  Ring ) | 
						
							| 14 | 12 13 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑈  ∈  Ring ) | 
						
							| 15 | 1 2 3 4 5 6 7 | m2cpmghm | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑇  ∈  ( 𝐴  GrpHom  𝑈 ) ) | 
						
							| 16 | 8 15 | sylan2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑇  ∈  ( 𝐴  GrpHom  𝑈 ) ) | 
						
							| 17 | 1 2 3 4 5 6 7 | m2cpmmhm | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑇  ∈  ( ( mulGrp ‘ 𝐴 )  MndHom  ( mulGrp ‘ 𝑈 ) ) ) | 
						
							| 18 | 16 17 | jca | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑇  ∈  ( 𝐴  GrpHom  𝑈 )  ∧  𝑇  ∈  ( ( mulGrp ‘ 𝐴 )  MndHom  ( mulGrp ‘ 𝑈 ) ) ) ) | 
						
							| 19 |  | eqid | ⊢ ( mulGrp ‘ 𝐴 )  =  ( mulGrp ‘ 𝐴 ) | 
						
							| 20 |  | eqid | ⊢ ( mulGrp ‘ 𝑈 )  =  ( mulGrp ‘ 𝑈 ) | 
						
							| 21 | 19 20 | isrhm | ⊢ ( 𝑇  ∈  ( 𝐴  RingHom  𝑈 )  ↔  ( ( 𝐴  ∈  Ring  ∧  𝑈  ∈  Ring )  ∧  ( 𝑇  ∈  ( 𝐴  GrpHom  𝑈 )  ∧  𝑇  ∈  ( ( mulGrp ‘ 𝐴 )  MndHom  ( mulGrp ‘ 𝑈 ) ) ) ) ) | 
						
							| 22 | 10 14 18 21 | syl21anbrc | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑇  ∈  ( 𝐴  RingHom  𝑈 ) ) |