Step |
Hyp |
Ref |
Expression |
1 |
|
m2cpm.s |
|- S = ( N ConstPolyMat R ) |
2 |
|
m2cpm.t |
|- T = ( N matToPolyMat R ) |
3 |
|
m2cpm.a |
|- A = ( N Mat R ) |
4 |
|
m2cpm.b |
|- B = ( Base ` A ) |
5 |
|
m2cpmghm.p |
|- P = ( Poly1 ` R ) |
6 |
|
m2cpmghm.c |
|- C = ( N Mat P ) |
7 |
|
m2cpmghm.u |
|- U = ( C |`s S ) |
8 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
9 |
3
|
matring |
|- ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) |
10 |
8 9
|
sylan2 |
|- ( ( N e. Fin /\ R e. CRing ) -> A e. Ring ) |
11 |
1 5 6
|
cpmatsrgpmat |
|- ( ( N e. Fin /\ R e. Ring ) -> S e. ( SubRing ` C ) ) |
12 |
8 11
|
sylan2 |
|- ( ( N e. Fin /\ R e. CRing ) -> S e. ( SubRing ` C ) ) |
13 |
7
|
subrgring |
|- ( S e. ( SubRing ` C ) -> U e. Ring ) |
14 |
12 13
|
syl |
|- ( ( N e. Fin /\ R e. CRing ) -> U e. Ring ) |
15 |
1 2 3 4 5 6 7
|
m2cpmghm |
|- ( ( N e. Fin /\ R e. Ring ) -> T e. ( A GrpHom U ) ) |
16 |
8 15
|
sylan2 |
|- ( ( N e. Fin /\ R e. CRing ) -> T e. ( A GrpHom U ) ) |
17 |
1 2 3 4 5 6 7
|
m2cpmmhm |
|- ( ( N e. Fin /\ R e. CRing ) -> T e. ( ( mulGrp ` A ) MndHom ( mulGrp ` U ) ) ) |
18 |
16 17
|
jca |
|- ( ( N e. Fin /\ R e. CRing ) -> ( T e. ( A GrpHom U ) /\ T e. ( ( mulGrp ` A ) MndHom ( mulGrp ` U ) ) ) ) |
19 |
|
eqid |
|- ( mulGrp ` A ) = ( mulGrp ` A ) |
20 |
|
eqid |
|- ( mulGrp ` U ) = ( mulGrp ` U ) |
21 |
19 20
|
isrhm |
|- ( T e. ( A RingHom U ) <-> ( ( A e. Ring /\ U e. Ring ) /\ ( T e. ( A GrpHom U ) /\ T e. ( ( mulGrp ` A ) MndHom ( mulGrp ` U ) ) ) ) ) |
22 |
10 14 18 21
|
syl21anbrc |
|- ( ( N e. Fin /\ R e. CRing ) -> T e. ( A RingHom U ) ) |