| Step | Hyp | Ref | Expression | 
						
							| 1 |  | m2cpm.s |  |-  S = ( N ConstPolyMat R ) | 
						
							| 2 |  | m2cpm.t |  |-  T = ( N matToPolyMat R ) | 
						
							| 3 |  | m2cpm.a |  |-  A = ( N Mat R ) | 
						
							| 4 |  | m2cpm.b |  |-  B = ( Base ` A ) | 
						
							| 5 |  | m2cpmghm.p |  |-  P = ( Poly1 ` R ) | 
						
							| 6 |  | m2cpmghm.c |  |-  C = ( N Mat P ) | 
						
							| 7 |  | m2cpmghm.u |  |-  U = ( C |`s S ) | 
						
							| 8 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 9 | 3 | matring |  |-  ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) | 
						
							| 10 | 8 9 | sylan2 |  |-  ( ( N e. Fin /\ R e. CRing ) -> A e. Ring ) | 
						
							| 11 | 1 5 6 | cpmatsrgpmat |  |-  ( ( N e. Fin /\ R e. Ring ) -> S e. ( SubRing ` C ) ) | 
						
							| 12 | 8 11 | sylan2 |  |-  ( ( N e. Fin /\ R e. CRing ) -> S e. ( SubRing ` C ) ) | 
						
							| 13 | 7 | subrgring |  |-  ( S e. ( SubRing ` C ) -> U e. Ring ) | 
						
							| 14 | 12 13 | syl |  |-  ( ( N e. Fin /\ R e. CRing ) -> U e. Ring ) | 
						
							| 15 | 1 2 3 4 5 6 7 | m2cpmghm |  |-  ( ( N e. Fin /\ R e. Ring ) -> T e. ( A GrpHom U ) ) | 
						
							| 16 | 8 15 | sylan2 |  |-  ( ( N e. Fin /\ R e. CRing ) -> T e. ( A GrpHom U ) ) | 
						
							| 17 | 1 2 3 4 5 6 7 | m2cpmmhm |  |-  ( ( N e. Fin /\ R e. CRing ) -> T e. ( ( mulGrp ` A ) MndHom ( mulGrp ` U ) ) ) | 
						
							| 18 | 16 17 | jca |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( T e. ( A GrpHom U ) /\ T e. ( ( mulGrp ` A ) MndHom ( mulGrp ` U ) ) ) ) | 
						
							| 19 |  | eqid |  |-  ( mulGrp ` A ) = ( mulGrp ` A ) | 
						
							| 20 |  | eqid |  |-  ( mulGrp ` U ) = ( mulGrp ` U ) | 
						
							| 21 | 19 20 | isrhm |  |-  ( T e. ( A RingHom U ) <-> ( ( A e. Ring /\ U e. Ring ) /\ ( T e. ( A GrpHom U ) /\ T e. ( ( mulGrp ` A ) MndHom ( mulGrp ` U ) ) ) ) ) | 
						
							| 22 | 10 14 18 21 | syl21anbrc |  |-  ( ( N e. Fin /\ R e. CRing ) -> T e. ( A RingHom U ) ) |