| Step | Hyp | Ref | Expression | 
						
							| 1 |  | m2cpm.s |  |-  S = ( N ConstPolyMat R ) | 
						
							| 2 |  | m2cpm.t |  |-  T = ( N matToPolyMat R ) | 
						
							| 3 |  | m2cpm.a |  |-  A = ( N Mat R ) | 
						
							| 4 |  | m2cpm.b |  |-  B = ( Base ` A ) | 
						
							| 5 |  | m2cpmghm.p |  |-  P = ( Poly1 ` R ) | 
						
							| 6 |  | m2cpmghm.c |  |-  C = ( N Mat P ) | 
						
							| 7 |  | m2cpmghm.u |  |-  U = ( C |`s S ) | 
						
							| 8 |  | eqid |  |-  ( Base ` C ) = ( Base ` C ) | 
						
							| 9 | 2 3 4 5 6 8 | mat2pmatmhm |  |-  ( ( N e. Fin /\ R e. CRing ) -> T e. ( ( mulGrp ` A ) MndHom ( mulGrp ` C ) ) ) | 
						
							| 10 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 11 | 10 | anim2i |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( N e. Fin /\ R e. Ring ) ) | 
						
							| 12 | 1 5 6 | cpmatsrgpmat |  |-  ( ( N e. Fin /\ R e. Ring ) -> S e. ( SubRing ` C ) ) | 
						
							| 13 |  | eqid |  |-  ( mulGrp ` C ) = ( mulGrp ` C ) | 
						
							| 14 | 13 | subrgsubm |  |-  ( S e. ( SubRing ` C ) -> S e. ( SubMnd ` ( mulGrp ` C ) ) ) | 
						
							| 15 | 11 12 14 | 3syl |  |-  ( ( N e. Fin /\ R e. CRing ) -> S e. ( SubMnd ` ( mulGrp ` C ) ) ) | 
						
							| 16 | 1 2 3 4 | m2cpmf |  |-  ( ( N e. Fin /\ R e. Ring ) -> T : B --> S ) | 
						
							| 17 |  | frn |  |-  ( T : B --> S -> ran T C_ S ) | 
						
							| 18 | 11 16 17 | 3syl |  |-  ( ( N e. Fin /\ R e. CRing ) -> ran T C_ S ) | 
						
							| 19 | 6 | ovexi |  |-  C e. _V | 
						
							| 20 | 1 | ovexi |  |-  S e. _V | 
						
							| 21 | 7 13 | mgpress |  |-  ( ( C e. _V /\ S e. _V ) -> ( ( mulGrp ` C ) |`s S ) = ( mulGrp ` U ) ) | 
						
							| 22 | 19 20 21 | mp2an |  |-  ( ( mulGrp ` C ) |`s S ) = ( mulGrp ` U ) | 
						
							| 23 | 22 | eqcomi |  |-  ( mulGrp ` U ) = ( ( mulGrp ` C ) |`s S ) | 
						
							| 24 | 23 | resmhm2b |  |-  ( ( S e. ( SubMnd ` ( mulGrp ` C ) ) /\ ran T C_ S ) -> ( T e. ( ( mulGrp ` A ) MndHom ( mulGrp ` C ) ) <-> T e. ( ( mulGrp ` A ) MndHom ( mulGrp ` U ) ) ) ) | 
						
							| 25 | 15 18 24 | syl2anc |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( T e. ( ( mulGrp ` A ) MndHom ( mulGrp ` C ) ) <-> T e. ( ( mulGrp ` A ) MndHom ( mulGrp ` U ) ) ) ) | 
						
							| 26 | 9 25 | mpbid |  |-  ( ( N e. Fin /\ R e. CRing ) -> T e. ( ( mulGrp ` A ) MndHom ( mulGrp ` U ) ) ) |