Step |
Hyp |
Ref |
Expression |
1 |
|
m2cpm.s |
|- S = ( N ConstPolyMat R ) |
2 |
|
m2cpm.t |
|- T = ( N matToPolyMat R ) |
3 |
|
m2cpm.a |
|- A = ( N Mat R ) |
4 |
|
m2cpm.b |
|- B = ( Base ` A ) |
5 |
|
m2cpmghm.p |
|- P = ( Poly1 ` R ) |
6 |
|
m2cpmghm.c |
|- C = ( N Mat P ) |
7 |
|
m2cpmghm.u |
|- U = ( C |`s S ) |
8 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
9 |
2 3 4 5 6 8
|
mat2pmatmhm |
|- ( ( N e. Fin /\ R e. CRing ) -> T e. ( ( mulGrp ` A ) MndHom ( mulGrp ` C ) ) ) |
10 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
11 |
10
|
anim2i |
|- ( ( N e. Fin /\ R e. CRing ) -> ( N e. Fin /\ R e. Ring ) ) |
12 |
1 5 6
|
cpmatsrgpmat |
|- ( ( N e. Fin /\ R e. Ring ) -> S e. ( SubRing ` C ) ) |
13 |
|
eqid |
|- ( mulGrp ` C ) = ( mulGrp ` C ) |
14 |
13
|
subrgsubm |
|- ( S e. ( SubRing ` C ) -> S e. ( SubMnd ` ( mulGrp ` C ) ) ) |
15 |
11 12 14
|
3syl |
|- ( ( N e. Fin /\ R e. CRing ) -> S e. ( SubMnd ` ( mulGrp ` C ) ) ) |
16 |
1 2 3 4
|
m2cpmf |
|- ( ( N e. Fin /\ R e. Ring ) -> T : B --> S ) |
17 |
|
frn |
|- ( T : B --> S -> ran T C_ S ) |
18 |
11 16 17
|
3syl |
|- ( ( N e. Fin /\ R e. CRing ) -> ran T C_ S ) |
19 |
6
|
ovexi |
|- C e. _V |
20 |
1
|
ovexi |
|- S e. _V |
21 |
7 13
|
mgpress |
|- ( ( C e. _V /\ S e. _V ) -> ( ( mulGrp ` C ) |`s S ) = ( mulGrp ` U ) ) |
22 |
19 20 21
|
mp2an |
|- ( ( mulGrp ` C ) |`s S ) = ( mulGrp ` U ) |
23 |
22
|
eqcomi |
|- ( mulGrp ` U ) = ( ( mulGrp ` C ) |`s S ) |
24 |
23
|
resmhm2b |
|- ( ( S e. ( SubMnd ` ( mulGrp ` C ) ) /\ ran T C_ S ) -> ( T e. ( ( mulGrp ` A ) MndHom ( mulGrp ` C ) ) <-> T e. ( ( mulGrp ` A ) MndHom ( mulGrp ` U ) ) ) ) |
25 |
15 18 24
|
syl2anc |
|- ( ( N e. Fin /\ R e. CRing ) -> ( T e. ( ( mulGrp ` A ) MndHom ( mulGrp ` C ) ) <-> T e. ( ( mulGrp ` A ) MndHom ( mulGrp ` U ) ) ) ) |
26 |
9 25
|
mpbid |
|- ( ( N e. Fin /\ R e. CRing ) -> T e. ( ( mulGrp ` A ) MndHom ( mulGrp ` U ) ) ) |