Metamath Proof Explorer


Theorem m2cpmmhm

Description: The transformation of matrices into constant polynomial matrices is a homomorphism of multiplicative monoids. (Contributed by AV, 18-Nov-2019)

Ref Expression
Hypotheses m2cpm.s S = N ConstPolyMat R
m2cpm.t T = N matToPolyMat R
m2cpm.a A = N Mat R
m2cpm.b B = Base A
m2cpmghm.p P = Poly 1 R
m2cpmghm.c C = N Mat P
m2cpmghm.u U = C 𝑠 S
Assertion m2cpmmhm N Fin R CRing T mulGrp A MndHom mulGrp U

Proof

Step Hyp Ref Expression
1 m2cpm.s S = N ConstPolyMat R
2 m2cpm.t T = N matToPolyMat R
3 m2cpm.a A = N Mat R
4 m2cpm.b B = Base A
5 m2cpmghm.p P = Poly 1 R
6 m2cpmghm.c C = N Mat P
7 m2cpmghm.u U = C 𝑠 S
8 eqid Base C = Base C
9 2 3 4 5 6 8 mat2pmatmhm N Fin R CRing T mulGrp A MndHom mulGrp C
10 crngring R CRing R Ring
11 10 anim2i N Fin R CRing N Fin R Ring
12 1 5 6 cpmatsrgpmat N Fin R Ring S SubRing C
13 eqid mulGrp C = mulGrp C
14 13 subrgsubm S SubRing C S SubMnd mulGrp C
15 11 12 14 3syl N Fin R CRing S SubMnd mulGrp C
16 1 2 3 4 m2cpmf N Fin R Ring T : B S
17 frn T : B S ran T S
18 11 16 17 3syl N Fin R CRing ran T S
19 6 ovexi C V
20 1 ovexi S V
21 7 13 mgpress C V S V mulGrp C 𝑠 S = mulGrp U
22 19 20 21 mp2an mulGrp C 𝑠 S = mulGrp U
23 22 eqcomi mulGrp U = mulGrp C 𝑠 S
24 23 resmhm2b S SubMnd mulGrp C ran T S T mulGrp A MndHom mulGrp C T mulGrp A MndHom mulGrp U
25 15 18 24 syl2anc N Fin R CRing T mulGrp A MndHom mulGrp C T mulGrp A MndHom mulGrp U
26 9 25 mpbid N Fin R CRing T mulGrp A MndHom mulGrp U