| Step | Hyp | Ref | Expression | 
						
							| 1 |  | m2cpm.s | ⊢ 𝑆  =  ( 𝑁  ConstPolyMat  𝑅 ) | 
						
							| 2 |  | m2cpm.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 3 |  | m2cpm.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 4 |  | m2cpm.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 5 |  | m2cpmghm.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 6 |  | m2cpmghm.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 7 |  | m2cpmghm.u | ⊢ 𝑈  =  ( 𝐶  ↾s  𝑆 ) | 
						
							| 8 |  | eqid | ⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 ) | 
						
							| 9 | 2 3 4 5 6 8 | mat2pmatmhm | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑇  ∈  ( ( mulGrp ‘ 𝐴 )  MndHom  ( mulGrp ‘ 𝐶 ) ) ) | 
						
							| 10 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 11 | 10 | anim2i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 12 | 1 5 6 | cpmatsrgpmat | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑆  ∈  ( SubRing ‘ 𝐶 ) ) | 
						
							| 13 |  | eqid | ⊢ ( mulGrp ‘ 𝐶 )  =  ( mulGrp ‘ 𝐶 ) | 
						
							| 14 | 13 | subrgsubm | ⊢ ( 𝑆  ∈  ( SubRing ‘ 𝐶 )  →  𝑆  ∈  ( SubMnd ‘ ( mulGrp ‘ 𝐶 ) ) ) | 
						
							| 15 | 11 12 14 | 3syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑆  ∈  ( SubMnd ‘ ( mulGrp ‘ 𝐶 ) ) ) | 
						
							| 16 | 1 2 3 4 | m2cpmf | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑇 : 𝐵 ⟶ 𝑆 ) | 
						
							| 17 |  | frn | ⊢ ( 𝑇 : 𝐵 ⟶ 𝑆  →  ran  𝑇  ⊆  𝑆 ) | 
						
							| 18 | 11 16 17 | 3syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ran  𝑇  ⊆  𝑆 ) | 
						
							| 19 | 6 | ovexi | ⊢ 𝐶  ∈  V | 
						
							| 20 | 1 | ovexi | ⊢ 𝑆  ∈  V | 
						
							| 21 | 7 13 | mgpress | ⊢ ( ( 𝐶  ∈  V  ∧  𝑆  ∈  V )  →  ( ( mulGrp ‘ 𝐶 )  ↾s  𝑆 )  =  ( mulGrp ‘ 𝑈 ) ) | 
						
							| 22 | 19 20 21 | mp2an | ⊢ ( ( mulGrp ‘ 𝐶 )  ↾s  𝑆 )  =  ( mulGrp ‘ 𝑈 ) | 
						
							| 23 | 22 | eqcomi | ⊢ ( mulGrp ‘ 𝑈 )  =  ( ( mulGrp ‘ 𝐶 )  ↾s  𝑆 ) | 
						
							| 24 | 23 | resmhm2b | ⊢ ( ( 𝑆  ∈  ( SubMnd ‘ ( mulGrp ‘ 𝐶 ) )  ∧  ran  𝑇  ⊆  𝑆 )  →  ( 𝑇  ∈  ( ( mulGrp ‘ 𝐴 )  MndHom  ( mulGrp ‘ 𝐶 ) )  ↔  𝑇  ∈  ( ( mulGrp ‘ 𝐴 )  MndHom  ( mulGrp ‘ 𝑈 ) ) ) ) | 
						
							| 25 | 15 18 24 | syl2anc | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑇  ∈  ( ( mulGrp ‘ 𝐴 )  MndHom  ( mulGrp ‘ 𝐶 ) )  ↔  𝑇  ∈  ( ( mulGrp ‘ 𝐴 )  MndHom  ( mulGrp ‘ 𝑈 ) ) ) ) | 
						
							| 26 | 9 25 | mpbid | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑇  ∈  ( ( mulGrp ‘ 𝐴 )  MndHom  ( mulGrp ‘ 𝑈 ) ) ) |