| Step |
Hyp |
Ref |
Expression |
| 1 |
|
m2cpm.s |
⊢ 𝑆 = ( 𝑁 ConstPolyMat 𝑅 ) |
| 2 |
|
m2cpm.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
| 3 |
|
m2cpm.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 4 |
|
m2cpm.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
| 5 |
|
simpl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑁 ∈ Fin ) |
| 6 |
5 5
|
jca |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) ) |
| 7 |
6
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑚 ∈ 𝐵 ) → ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) ) |
| 8 |
|
mpoexga |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ ( 𝑖 𝑚 𝑗 ) ) ) ∈ V ) |
| 9 |
7 8
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑚 ∈ 𝐵 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ ( 𝑖 𝑚 𝑗 ) ) ) ∈ V ) |
| 10 |
|
eqid |
⊢ ( Poly1 ‘ 𝑅 ) = ( Poly1 ‘ 𝑅 ) |
| 11 |
|
eqid |
⊢ ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) = ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) |
| 12 |
2 3 4 10 11
|
mat2pmatfval |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 = ( 𝑚 ∈ 𝐵 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ ( 𝑖 𝑚 𝑗 ) ) ) ) ) |
| 13 |
1 2 3 4
|
m2cpm |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑏 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑏 ) ∈ 𝑆 ) |
| 14 |
13
|
3expa |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑏 ) ∈ 𝑆 ) |
| 15 |
9 12 14
|
fmpt2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 : 𝐵 ⟶ 𝑆 ) |