Metamath Proof Explorer


Theorem m2cpmf

Description: The matrix transformation is a function from the matrices to the constant polynomial matrices. (Contributed by AV, 18-Nov-2019)

Ref Expression
Hypotheses m2cpm.s 𝑆 = ( 𝑁 ConstPolyMat 𝑅 )
m2cpm.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
m2cpm.a 𝐴 = ( 𝑁 Mat 𝑅 )
m2cpm.b 𝐵 = ( Base ‘ 𝐴 )
Assertion m2cpmf ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 : 𝐵𝑆 )

Proof

Step Hyp Ref Expression
1 m2cpm.s 𝑆 = ( 𝑁 ConstPolyMat 𝑅 )
2 m2cpm.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
3 m2cpm.a 𝐴 = ( 𝑁 Mat 𝑅 )
4 m2cpm.b 𝐵 = ( Base ‘ 𝐴 )
5 simpl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑁 ∈ Fin )
6 5 5 jca ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) )
7 6 adantr ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑚𝐵 ) → ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) )
8 mpoexga ( ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) → ( 𝑖𝑁 , 𝑗𝑁 ↦ ( ( algSc ‘ ( Poly1𝑅 ) ) ‘ ( 𝑖 𝑚 𝑗 ) ) ) ∈ V )
9 7 8 syl ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑚𝐵 ) → ( 𝑖𝑁 , 𝑗𝑁 ↦ ( ( algSc ‘ ( Poly1𝑅 ) ) ‘ ( 𝑖 𝑚 𝑗 ) ) ) ∈ V )
10 eqid ( Poly1𝑅 ) = ( Poly1𝑅 )
11 eqid ( algSc ‘ ( Poly1𝑅 ) ) = ( algSc ‘ ( Poly1𝑅 ) )
12 2 3 4 10 11 mat2pmatfval ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 = ( 𝑚𝐵 ↦ ( 𝑖𝑁 , 𝑗𝑁 ↦ ( ( algSc ‘ ( Poly1𝑅 ) ) ‘ ( 𝑖 𝑚 𝑗 ) ) ) ) )
13 1 2 3 4 m2cpm ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑏𝐵 ) → ( 𝑇𝑏 ) ∈ 𝑆 )
14 13 3expa ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑏𝐵 ) → ( 𝑇𝑏 ) ∈ 𝑆 )
15 9 12 14 fmpt2d ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 : 𝐵𝑆 )