Metamath Proof Explorer


Theorem cpmatsrgpmat

Description: The set of all constant polynomial matrices over a ring R is a subring of the ring of all polynomial matrices over the ring R . (Contributed by AV, 18-Nov-2019)

Ref Expression
Hypotheses cpmatsrngpmat.s S=NConstPolyMatR
cpmatsrngpmat.p P=Poly1R
cpmatsrngpmat.c C=NMatP
Assertion cpmatsrgpmat NFinRRingSSubRingC

Proof

Step Hyp Ref Expression
1 cpmatsrngpmat.s S=NConstPolyMatR
2 cpmatsrngpmat.p P=Poly1R
3 cpmatsrngpmat.c C=NMatP
4 1 2 3 cpmatsubgpmat NFinRRingSSubGrpC
5 1 2 3 1elcpmat NFinRRing1CS
6 1 2 3 cpmatmcl NFinRRingxSySxCyS
7 2 3 pmatring NFinRRingCRing
8 eqid BaseC=BaseC
9 eqid 1C=1C
10 eqid C=C
11 8 9 10 issubrg2 CRingSSubRingCSSubGrpC1CSxSySxCyS
12 7 11 syl NFinRRingSSubRingCSSubGrpC1CSxSySxCyS
13 4 5 6 12 mpbir3and NFinRRingSSubRingC