Metamath Proof Explorer


Theorem cpmatsubgpmat

Description: The set of all constant polynomial matrices over a ring R is an additive subgroup of the ring of all polynomial matrices over the ring R . (Contributed by AV, 15-Nov-2019)

Ref Expression
Hypotheses cpmatsrngpmat.s S=NConstPolyMatR
cpmatsrngpmat.p P=Poly1R
cpmatsrngpmat.c C=NMatP
Assertion cpmatsubgpmat NFinRRingSSubGrpC

Proof

Step Hyp Ref Expression
1 cpmatsrngpmat.s S=NConstPolyMatR
2 cpmatsrngpmat.p P=Poly1R
3 cpmatsrngpmat.c C=NMatP
4 eqid BaseC=BaseC
5 1 2 3 4 cpmat NFinRRingS=mBaseC|iNjNkcoe1imjk=0R
6 ssrab2 mBaseC|iNjNkcoe1imjk=0RBaseC
7 5 6 eqsstrdi NFinRRingSBaseC
8 1 2 3 1elcpmat NFinRRing1CS
9 8 ne0d NFinRRingS
10 1 2 3 cpmatacl NFinRRingxSySx+CyS
11 1 2 3 cpmatinvcl NFinRRingxSinvgCxS
12 r19.26 xSySx+CySinvgCxSxSySx+CySxSinvgCxS
13 10 11 12 sylanbrc NFinRRingxSySx+CySinvgCxS
14 2 3 pmatring NFinRRingCRing
15 ringgrp CRingCGrp
16 eqid +C=+C
17 eqid invgC=invgC
18 4 16 17 issubg2 CGrpSSubGrpCSBaseCSxSySx+CySinvgCxS
19 14 15 18 3syl NFinRRingSSubGrpCSBaseCSxSySx+CySinvgCxS
20 7 9 13 19 mpbir3and NFinRRingSSubGrpC