Metamath Proof Explorer


Theorem cpmatsrgpmat

Description: The set of all constant polynomial matrices over a ring R is a subring of the ring of all polynomial matrices over the ring R . (Contributed by AV, 18-Nov-2019)

Ref Expression
Hypotheses cpmatsrngpmat.s
|- S = ( N ConstPolyMat R )
cpmatsrngpmat.p
|- P = ( Poly1 ` R )
cpmatsrngpmat.c
|- C = ( N Mat P )
Assertion cpmatsrgpmat
|- ( ( N e. Fin /\ R e. Ring ) -> S e. ( SubRing ` C ) )

Proof

Step Hyp Ref Expression
1 cpmatsrngpmat.s
 |-  S = ( N ConstPolyMat R )
2 cpmatsrngpmat.p
 |-  P = ( Poly1 ` R )
3 cpmatsrngpmat.c
 |-  C = ( N Mat P )
4 1 2 3 cpmatsubgpmat
 |-  ( ( N e. Fin /\ R e. Ring ) -> S e. ( SubGrp ` C ) )
5 1 2 3 1elcpmat
 |-  ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` C ) e. S )
6 1 2 3 cpmatmcl
 |-  ( ( N e. Fin /\ R e. Ring ) -> A. x e. S A. y e. S ( x ( .r ` C ) y ) e. S )
7 2 3 pmatring
 |-  ( ( N e. Fin /\ R e. Ring ) -> C e. Ring )
8 eqid
 |-  ( Base ` C ) = ( Base ` C )
9 eqid
 |-  ( 1r ` C ) = ( 1r ` C )
10 eqid
 |-  ( .r ` C ) = ( .r ` C )
11 8 9 10 issubrg2
 |-  ( C e. Ring -> ( S e. ( SubRing ` C ) <-> ( S e. ( SubGrp ` C ) /\ ( 1r ` C ) e. S /\ A. x e. S A. y e. S ( x ( .r ` C ) y ) e. S ) ) )
12 7 11 syl
 |-  ( ( N e. Fin /\ R e. Ring ) -> ( S e. ( SubRing ` C ) <-> ( S e. ( SubGrp ` C ) /\ ( 1r ` C ) e. S /\ A. x e. S A. y e. S ( x ( .r ` C ) y ) e. S ) ) )
13 4 5 6 12 mpbir3and
 |-  ( ( N e. Fin /\ R e. Ring ) -> S e. ( SubRing ` C ) )