| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cpmatsrngpmat.s |
|
| 2 |
|
cpmatsrngpmat.p |
|
| 3 |
|
cpmatsrngpmat.c |
|
| 4 |
1 2 3
|
cpmatmcllem |
|
| 5 |
2
|
ply1ring |
|
| 6 |
5
|
ad4antlr |
|
| 7 |
|
eqid |
|
| 8 |
1 2 3 7
|
cpmatpmat |
|
| 9 |
8
|
3expa |
|
| 10 |
1 2 3 7
|
cpmatpmat |
|
| 11 |
10
|
3expa |
|
| 12 |
9 11
|
anim12dan |
|
| 13 |
12
|
adantr |
|
| 14 |
13
|
adantr |
|
| 15 |
|
simpr |
|
| 16 |
15
|
anim1i |
|
| 17 |
|
eqid |
|
| 18 |
3 7 17
|
matmulcell |
|
| 19 |
6 14 16 18
|
syl3anc |
|
| 20 |
19
|
fveq2d |
|
| 21 |
20
|
adantr |
|
| 22 |
21
|
fveq1d |
|
| 23 |
22
|
eqeq1d |
|
| 24 |
23
|
ralbidva |
|
| 25 |
24
|
ralbidva |
|
| 26 |
25
|
ralbidva |
|
| 27 |
4 26
|
mpbird |
|
| 28 |
|
simpl |
|
| 29 |
28
|
adantr |
|
| 30 |
|
simpr |
|
| 31 |
30
|
adantr |
|
| 32 |
2 3
|
pmatring |
|
| 33 |
32
|
adantr |
|
| 34 |
|
simpl |
|
| 35 |
34
|
anim2i |
|
| 36 |
|
df-3an |
|
| 37 |
35 36
|
sylibr |
|
| 38 |
37 8
|
syl |
|
| 39 |
|
simpr |
|
| 40 |
39
|
anim2i |
|
| 41 |
|
df-3an |
|
| 42 |
40 41
|
sylibr |
|
| 43 |
42 10
|
syl |
|
| 44 |
7 17
|
ringcl |
|
| 45 |
33 38 43 44
|
syl3anc |
|
| 46 |
1 2 3 7
|
cpmatel |
|
| 47 |
29 31 45 46
|
syl3anc |
|
| 48 |
27 47
|
mpbird |
|
| 49 |
48
|
ralrimivva |
|