Metamath Proof Explorer


Theorem cpmatmcl

Description: The set of all constant polynomial matrices over a ring R is closed under multiplication. (Contributed by AV, 18-Nov-2019)

Ref Expression
Hypotheses cpmatsrngpmat.s S=NConstPolyMatR
cpmatsrngpmat.p P=Poly1R
cpmatsrngpmat.c C=NMatP
Assertion cpmatmcl NFinRRingxSySxCyS

Proof

Step Hyp Ref Expression
1 cpmatsrngpmat.s S=NConstPolyMatR
2 cpmatsrngpmat.p P=Poly1R
3 cpmatsrngpmat.c C=NMatP
4 1 2 3 cpmatmcllem NFinRRingxSySiNjNccoe1PkNixkPkyjc=0R
5 2 ply1ring RRingPRing
6 5 ad4antlr NFinRRingxSySiNjNPRing
7 eqid BaseC=BaseC
8 1 2 3 7 cpmatpmat NFinRRingxSxBaseC
9 8 3expa NFinRRingxSxBaseC
10 1 2 3 7 cpmatpmat NFinRRingySyBaseC
11 10 3expa NFinRRingySyBaseC
12 9 11 anim12dan NFinRRingxSySxBaseCyBaseC
13 12 adantr NFinRRingxSySiNxBaseCyBaseC
14 13 adantr NFinRRingxSySiNjNxBaseCyBaseC
15 simpr NFinRRingxSySiNiN
16 15 anim1i NFinRRingxSySiNjNiNjN
17 eqid C=C
18 3 7 17 matmulcell PRingxBaseCyBaseCiNjNixCyj=PkNixkPkyj
19 6 14 16 18 syl3anc NFinRRingxSySiNjNixCyj=PkNixkPkyj
20 19 fveq2d NFinRRingxSySiNjNcoe1ixCyj=coe1PkNixkPkyj
21 20 adantr NFinRRingxSySiNjNccoe1ixCyj=coe1PkNixkPkyj
22 21 fveq1d NFinRRingxSySiNjNccoe1ixCyjc=coe1PkNixkPkyjc
23 22 eqeq1d NFinRRingxSySiNjNccoe1ixCyjc=0Rcoe1PkNixkPkyjc=0R
24 23 ralbidva NFinRRingxSySiNjNccoe1ixCyjc=0Rccoe1PkNixkPkyjc=0R
25 24 ralbidva NFinRRingxSySiNjNccoe1ixCyjc=0RjNccoe1PkNixkPkyjc=0R
26 25 ralbidva NFinRRingxSySiNjNccoe1ixCyjc=0RiNjNccoe1PkNixkPkyjc=0R
27 4 26 mpbird NFinRRingxSySiNjNccoe1ixCyjc=0R
28 simpl NFinRRingNFin
29 28 adantr NFinRRingxSySNFin
30 simpr NFinRRingRRing
31 30 adantr NFinRRingxSySRRing
32 2 3 pmatring NFinRRingCRing
33 32 adantr NFinRRingxSySCRing
34 simpl xSySxS
35 34 anim2i NFinRRingxSySNFinRRingxS
36 df-3an NFinRRingxSNFinRRingxS
37 35 36 sylibr NFinRRingxSySNFinRRingxS
38 37 8 syl NFinRRingxSySxBaseC
39 simpr xSySyS
40 39 anim2i NFinRRingxSySNFinRRingyS
41 df-3an NFinRRingySNFinRRingyS
42 40 41 sylibr NFinRRingxSySNFinRRingyS
43 42 10 syl NFinRRingxSySyBaseC
44 7 17 ringcl CRingxBaseCyBaseCxCyBaseC
45 33 38 43 44 syl3anc NFinRRingxSySxCyBaseC
46 1 2 3 7 cpmatel NFinRRingxCyBaseCxCySiNjNccoe1ixCyjc=0R
47 29 31 45 46 syl3anc NFinRRingxSySxCySiNjNccoe1ixCyjc=0R
48 27 47 mpbird NFinRRingxSySxCyS
49 48 ralrimivva NFinRRingxSySxCyS