| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mbfeqa.1 |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 2 |
|
mbfeqa.2 |
⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) = 0 ) |
| 3 |
|
mbfeqa.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐶 = 𝐷 ) |
| 4 |
|
mbfeqa.4 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ ℂ ) |
| 5 |
|
mbfeqa.5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐷 ∈ ℂ ) |
| 6 |
3
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) → ( ℜ ‘ 𝐶 ) = ( ℜ ‘ 𝐷 ) ) |
| 7 |
4
|
recld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ℜ ‘ 𝐶 ) ∈ ℝ ) |
| 8 |
5
|
recld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ℜ ‘ 𝐷 ) ∈ ℝ ) |
| 9 |
1 2 6 7 8
|
mbfeqalem2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ ( ℜ ‘ 𝐶 ) ) ∈ MblFn ↔ ( 𝑥 ∈ 𝐵 ↦ ( ℜ ‘ 𝐷 ) ) ∈ MblFn ) ) |
| 10 |
3
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) → ( ℑ ‘ 𝐶 ) = ( ℑ ‘ 𝐷 ) ) |
| 11 |
4
|
imcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ℑ ‘ 𝐶 ) ∈ ℝ ) |
| 12 |
5
|
imcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ℑ ‘ 𝐷 ) ∈ ℝ ) |
| 13 |
1 2 10 11 12
|
mbfeqalem2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ ( ℑ ‘ 𝐶 ) ) ∈ MblFn ↔ ( 𝑥 ∈ 𝐵 ↦ ( ℑ ‘ 𝐷 ) ) ∈ MblFn ) ) |
| 14 |
9 13
|
anbi12d |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐵 ↦ ( ℜ ‘ 𝐶 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ↦ ( ℑ ‘ 𝐶 ) ) ∈ MblFn ) ↔ ( ( 𝑥 ∈ 𝐵 ↦ ( ℜ ‘ 𝐷 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ↦ ( ℑ ‘ 𝐷 ) ) ∈ MblFn ) ) ) |
| 15 |
4
|
ismbfcn2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ MblFn ↔ ( ( 𝑥 ∈ 𝐵 ↦ ( ℜ ‘ 𝐶 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ↦ ( ℑ ‘ 𝐶 ) ) ∈ MblFn ) ) ) |
| 16 |
5
|
ismbfcn2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ∈ MblFn ↔ ( ( 𝑥 ∈ 𝐵 ↦ ( ℜ ‘ 𝐷 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ↦ ( ℑ ‘ 𝐷 ) ) ∈ MblFn ) ) ) |
| 17 |
14 15 16
|
3bitr4d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ MblFn ↔ ( 𝑥 ∈ 𝐵 ↦ 𝐷 ) ∈ MblFn ) ) |