Metamath Proof Explorer


Theorem meran3

Description: A single axiom for propositional calculus discovered by C. A. Meredith. (Contributed by Anthony Hart, 13-Aug-2011)

Ref Expression
Assertion meran3 ( ¬ ( ¬ ( ¬ 𝜑𝜓 ) ∨ ( 𝜒 ∨ ( 𝜃𝜏 ) ) ) ∨ ( ¬ ( ¬ 𝜒𝜑 ) ∨ ( 𝜏 ∨ ( 𝜃𝜑 ) ) ) )

Proof

Step Hyp Ref Expression
1 pm2.3 ( ( 𝜒 ∨ ( 𝜃𝜏 ) ) → ( 𝜒 ∨ ( 𝜏𝜃 ) ) )
2 1 imim2i ( ( ( ¬ 𝜑𝜓 ) → ( 𝜒 ∨ ( 𝜃𝜏 ) ) ) → ( ( ¬ 𝜑𝜓 ) → ( 𝜒 ∨ ( 𝜏𝜃 ) ) ) )
3 pm1.5 ( ( 𝜒 ∨ ( 𝜏𝜃 ) ) → ( 𝜏 ∨ ( 𝜒𝜃 ) ) )
4 2 3 syl6 ( ( ( ¬ 𝜑𝜓 ) → ( 𝜒 ∨ ( 𝜃𝜏 ) ) ) → ( ( ¬ 𝜑𝜓 ) → ( 𝜏 ∨ ( 𝜒𝜃 ) ) ) )
5 imor ( ( ( ¬ 𝜑𝜓 ) → ( 𝜒 ∨ ( 𝜃𝜏 ) ) ) ↔ ( ¬ ( ¬ 𝜑𝜓 ) ∨ ( 𝜒 ∨ ( 𝜃𝜏 ) ) ) )
6 imor ( ( ( ¬ 𝜑𝜓 ) → ( 𝜏 ∨ ( 𝜒𝜃 ) ) ) ↔ ( ¬ ( ¬ 𝜑𝜓 ) ∨ ( 𝜏 ∨ ( 𝜒𝜃 ) ) ) )
7 4 5 6 3imtr3i ( ( ¬ ( ¬ 𝜑𝜓 ) ∨ ( 𝜒 ∨ ( 𝜃𝜏 ) ) ) → ( ¬ ( ¬ 𝜑𝜓 ) ∨ ( 𝜏 ∨ ( 𝜒𝜃 ) ) ) )
8 meran1 ( ¬ ( ¬ ( ¬ 𝜑𝜓 ) ∨ ( 𝜏 ∨ ( 𝜒𝜃 ) ) ) ∨ ( ¬ ( ¬ 𝜒𝜑 ) ∨ ( 𝜏 ∨ ( 𝜃𝜑 ) ) ) )
9 8 imorri ( ( ¬ ( ¬ 𝜑𝜓 ) ∨ ( 𝜏 ∨ ( 𝜒𝜃 ) ) ) → ( ¬ ( ¬ 𝜒𝜑 ) ∨ ( 𝜏 ∨ ( 𝜃𝜑 ) ) ) )
10 7 9 syl ( ( ¬ ( ¬ 𝜑𝜓 ) ∨ ( 𝜒 ∨ ( 𝜃𝜏 ) ) ) → ( ¬ ( ¬ 𝜒𝜑 ) ∨ ( 𝜏 ∨ ( 𝜃𝜑 ) ) ) )
11 10 imori ( ¬ ( ¬ ( ¬ 𝜑𝜓 ) ∨ ( 𝜒 ∨ ( 𝜃𝜏 ) ) ) ∨ ( ¬ ( ¬ 𝜒𝜑 ) ∨ ( 𝜏 ∨ ( 𝜃𝜑 ) ) ) )