| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nannan | ⊢ ( ( 𝜑  ⊼  ( 𝜓  ⊼  𝜒 ) )  ↔  ( 𝜑  →  ( 𝜓  ∧  𝜒 ) ) ) | 
						
							| 2 |  | simpr | ⊢ ( ( 𝜓  ∧  𝜒 )  →  𝜒 ) | 
						
							| 3 | 2 | imim2i | ⊢ ( ( 𝜑  →  ( 𝜓  ∧  𝜒 ) )  →  ( 𝜑  →  𝜒 ) ) | 
						
							| 4 |  | pm2.27 | ⊢ ( 𝜑  →  ( ( 𝜑  →  𝜒 )  →  𝜒 ) ) | 
						
							| 5 | 4 | anim2d | ⊢ ( 𝜑  →  ( ( 𝜃  ∧  ( 𝜑  →  𝜒 ) )  →  ( 𝜃  ∧  𝜒 ) ) ) | 
						
							| 6 | 5 | expdimp | ⊢ ( ( 𝜑  ∧  𝜃 )  →  ( ( 𝜑  →  𝜒 )  →  ( 𝜃  ∧  𝜒 ) ) ) | 
						
							| 7 | 3 6 | syl5com | ⊢ ( ( 𝜑  →  ( 𝜓  ∧  𝜒 ) )  →  ( ( 𝜑  ∧  𝜃 )  →  ( 𝜃  ∧  𝜒 ) ) ) | 
						
							| 8 | 7 | con3d | ⊢ ( ( 𝜑  →  ( 𝜓  ∧  𝜒 ) )  →  ( ¬  ( 𝜃  ∧  𝜒 )  →  ¬  ( 𝜑  ∧  𝜃 ) ) ) | 
						
							| 9 |  | df-nan | ⊢ ( ( 𝜃  ⊼  𝜒 )  ↔  ¬  ( 𝜃  ∧  𝜒 ) ) | 
						
							| 10 |  | df-nan | ⊢ ( ( 𝜑  ⊼  𝜃 )  ↔  ¬  ( 𝜑  ∧  𝜃 ) ) | 
						
							| 11 | 8 9 10 | 3imtr4g | ⊢ ( ( 𝜑  →  ( 𝜓  ∧  𝜒 ) )  →  ( ( 𝜃  ⊼  𝜒 )  →  ( 𝜑  ⊼  𝜃 ) ) ) | 
						
							| 12 |  | nanim | ⊢ ( ( ( 𝜃  ⊼  𝜒 )  →  ( 𝜑  ⊼  𝜃 ) )  ↔  ( ( 𝜃  ⊼  𝜒 )  ⊼  ( ( 𝜑  ⊼  𝜃 )  ⊼  ( 𝜑  ⊼  𝜃 ) ) ) ) | 
						
							| 13 | 11 12 | sylib | ⊢ ( ( 𝜑  →  ( 𝜓  ∧  𝜒 ) )  →  ( ( 𝜃  ⊼  𝜒 )  ⊼  ( ( 𝜑  ⊼  𝜃 )  ⊼  ( 𝜑  ⊼  𝜃 ) ) ) ) | 
						
							| 14 |  | pm3.21 | ⊢ ( 𝜓  →  ( 𝜑  →  ( 𝜑  ∧  𝜓 ) ) ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝜓  ∧  𝜒 )  →  ( 𝜑  →  ( 𝜑  ∧  𝜓 ) ) ) | 
						
							| 16 | 15 | com12 | ⊢ ( 𝜑  →  ( ( 𝜓  ∧  𝜒 )  →  ( 𝜑  ∧  𝜓 ) ) ) | 
						
							| 17 | 16 | a2i | ⊢ ( ( 𝜑  →  ( 𝜓  ∧  𝜒 ) )  →  ( 𝜑  →  ( 𝜑  ∧  𝜓 ) ) ) | 
						
							| 18 |  | nannan | ⊢ ( ( 𝜑  ⊼  ( 𝜑  ⊼  𝜓 ) )  ↔  ( 𝜑  →  ( 𝜑  ∧  𝜓 ) ) ) | 
						
							| 19 | 17 18 | sylibr | ⊢ ( ( 𝜑  →  ( 𝜓  ∧  𝜒 ) )  →  ( 𝜑  ⊼  ( 𝜑  ⊼  𝜓 ) ) ) | 
						
							| 20 | 13 19 | jca | ⊢ ( ( 𝜑  →  ( 𝜓  ∧  𝜒 ) )  →  ( ( ( 𝜃  ⊼  𝜒 )  ⊼  ( ( 𝜑  ⊼  𝜃 )  ⊼  ( 𝜑  ⊼  𝜃 ) ) )  ∧  ( 𝜑  ⊼  ( 𝜑  ⊼  𝜓 ) ) ) ) | 
						
							| 21 | 1 20 | sylbi | ⊢ ( ( 𝜑  ⊼  ( 𝜓  ⊼  𝜒 ) )  →  ( ( ( 𝜃  ⊼  𝜒 )  ⊼  ( ( 𝜑  ⊼  𝜃 )  ⊼  ( 𝜑  ⊼  𝜃 ) ) )  ∧  ( 𝜑  ⊼  ( 𝜑  ⊼  𝜓 ) ) ) ) | 
						
							| 22 |  | nannan | ⊢ ( ( ( 𝜑  ⊼  ( 𝜓  ⊼  𝜒 ) )  ⊼  ( ( ( 𝜃  ⊼  𝜒 )  ⊼  ( ( 𝜑  ⊼  𝜃 )  ⊼  ( 𝜑  ⊼  𝜃 ) ) )  ⊼  ( 𝜑  ⊼  ( 𝜑  ⊼  𝜓 ) ) ) )  ↔  ( ( 𝜑  ⊼  ( 𝜓  ⊼  𝜒 ) )  →  ( ( ( 𝜃  ⊼  𝜒 )  ⊼  ( ( 𝜑  ⊼  𝜃 )  ⊼  ( 𝜑  ⊼  𝜃 ) ) )  ∧  ( 𝜑  ⊼  ( 𝜑  ⊼  𝜓 ) ) ) ) ) | 
						
							| 23 | 21 22 | mpbir | ⊢ ( ( 𝜑  ⊼  ( 𝜓  ⊼  𝜒 ) )  ⊼  ( ( ( 𝜃  ⊼  𝜒 )  ⊼  ( ( 𝜑  ⊼  𝜃 )  ⊼  ( 𝜑  ⊼  𝜃 ) ) )  ⊼  ( 𝜑  ⊼  ( 𝜑  ⊼  𝜓 ) ) ) ) |