Metamath Proof Explorer


Theorem waj-ax

Description: A single axiom for propositional calculus discovered by Mordchaj Wajsberg (Logical Works, Polish Academy of Sciences, 1977). See: Fitelson,Some recent results in algebra and logical calculi obtained using automated reasoning, 2003 (axiom W on slide 8). (Contributed by Anthony Hart, 13-Aug-2011)

Ref Expression
Assertion waj-ax ( ( 𝜑 ⊼ ( 𝜓𝜒 ) ) ⊼ ( ( ( 𝜃𝜒 ) ⊼ ( ( 𝜑𝜃 ) ⊼ ( 𝜑𝜃 ) ) ) ⊼ ( 𝜑 ⊼ ( 𝜑𝜓 ) ) ) )

Proof

Step Hyp Ref Expression
1 nannan ( ( 𝜑 ⊼ ( 𝜓𝜒 ) ) ↔ ( 𝜑 → ( 𝜓𝜒 ) ) )
2 simpr ( ( 𝜓𝜒 ) → 𝜒 )
3 2 imim2i ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) )
4 pm2.27 ( 𝜑 → ( ( 𝜑𝜒 ) → 𝜒 ) )
5 4 anim2d ( 𝜑 → ( ( 𝜃 ∧ ( 𝜑𝜒 ) ) → ( 𝜃𝜒 ) ) )
6 5 expdimp ( ( 𝜑𝜃 ) → ( ( 𝜑𝜒 ) → ( 𝜃𝜒 ) ) )
7 3 6 syl5com ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( 𝜑𝜃 ) → ( 𝜃𝜒 ) ) )
8 7 con3d ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ¬ ( 𝜃𝜒 ) → ¬ ( 𝜑𝜃 ) ) )
9 df-nan ( ( 𝜃𝜒 ) ↔ ¬ ( 𝜃𝜒 ) )
10 df-nan ( ( 𝜑𝜃 ) ↔ ¬ ( 𝜑𝜃 ) )
11 8 9 10 3imtr4g ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( 𝜃𝜒 ) → ( 𝜑𝜃 ) ) )
12 nanim ( ( ( 𝜃𝜒 ) → ( 𝜑𝜃 ) ) ↔ ( ( 𝜃𝜒 ) ⊼ ( ( 𝜑𝜃 ) ⊼ ( 𝜑𝜃 ) ) ) )
13 11 12 sylib ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( 𝜃𝜒 ) ⊼ ( ( 𝜑𝜃 ) ⊼ ( 𝜑𝜃 ) ) ) )
14 pm3.21 ( 𝜓 → ( 𝜑 → ( 𝜑𝜓 ) ) )
15 14 adantr ( ( 𝜓𝜒 ) → ( 𝜑 → ( 𝜑𝜓 ) ) )
16 15 com12 ( 𝜑 → ( ( 𝜓𝜒 ) → ( 𝜑𝜓 ) ) )
17 16 a2i ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑 → ( 𝜑𝜓 ) ) )
18 nannan ( ( 𝜑 ⊼ ( 𝜑𝜓 ) ) ↔ ( 𝜑 → ( 𝜑𝜓 ) ) )
19 17 18 sylibr ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑 ⊼ ( 𝜑𝜓 ) ) )
20 13 19 jca ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( ( 𝜃𝜒 ) ⊼ ( ( 𝜑𝜃 ) ⊼ ( 𝜑𝜃 ) ) ) ∧ ( 𝜑 ⊼ ( 𝜑𝜓 ) ) ) )
21 1 20 sylbi ( ( 𝜑 ⊼ ( 𝜓𝜒 ) ) → ( ( ( 𝜃𝜒 ) ⊼ ( ( 𝜑𝜃 ) ⊼ ( 𝜑𝜃 ) ) ) ∧ ( 𝜑 ⊼ ( 𝜑𝜓 ) ) ) )
22 nannan ( ( ( 𝜑 ⊼ ( 𝜓𝜒 ) ) ⊼ ( ( ( 𝜃𝜒 ) ⊼ ( ( 𝜑𝜃 ) ⊼ ( 𝜑𝜃 ) ) ) ⊼ ( 𝜑 ⊼ ( 𝜑𝜓 ) ) ) ) ↔ ( ( 𝜑 ⊼ ( 𝜓𝜒 ) ) → ( ( ( 𝜃𝜒 ) ⊼ ( ( 𝜑𝜃 ) ⊼ ( 𝜑𝜃 ) ) ) ∧ ( 𝜑 ⊼ ( 𝜑𝜓 ) ) ) ) )
23 21 22 mpbir ( ( 𝜑 ⊼ ( 𝜓𝜒 ) ) ⊼ ( ( ( 𝜃𝜒 ) ⊼ ( ( 𝜑𝜃 ) ⊼ ( 𝜑𝜃 ) ) ) ⊼ ( 𝜑 ⊼ ( 𝜑𝜓 ) ) ) )