| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nannan |
⊢ ( ( 𝜑 ⊼ ( 𝜓 ⊼ 𝜒 ) ) ↔ ( 𝜑 → ( 𝜓 ∧ 𝜒 ) ) ) |
| 2 |
|
simpr |
⊢ ( ( 𝜓 ∧ 𝜒 ) → 𝜒 ) |
| 3 |
2
|
imim2i |
⊢ ( ( 𝜑 → ( 𝜓 ∧ 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) |
| 4 |
|
pm2.27 |
⊢ ( 𝜑 → ( ( 𝜑 → 𝜒 ) → 𝜒 ) ) |
| 5 |
4
|
anim2d |
⊢ ( 𝜑 → ( ( 𝜃 ∧ ( 𝜑 → 𝜒 ) ) → ( 𝜃 ∧ 𝜒 ) ) ) |
| 6 |
5
|
expdimp |
⊢ ( ( 𝜑 ∧ 𝜃 ) → ( ( 𝜑 → 𝜒 ) → ( 𝜃 ∧ 𝜒 ) ) ) |
| 7 |
3 6
|
syl5com |
⊢ ( ( 𝜑 → ( 𝜓 ∧ 𝜒 ) ) → ( ( 𝜑 ∧ 𝜃 ) → ( 𝜃 ∧ 𝜒 ) ) ) |
| 8 |
7
|
con3d |
⊢ ( ( 𝜑 → ( 𝜓 ∧ 𝜒 ) ) → ( ¬ ( 𝜃 ∧ 𝜒 ) → ¬ ( 𝜑 ∧ 𝜃 ) ) ) |
| 9 |
|
df-nan |
⊢ ( ( 𝜃 ⊼ 𝜒 ) ↔ ¬ ( 𝜃 ∧ 𝜒 ) ) |
| 10 |
|
df-nan |
⊢ ( ( 𝜑 ⊼ 𝜃 ) ↔ ¬ ( 𝜑 ∧ 𝜃 ) ) |
| 11 |
8 9 10
|
3imtr4g |
⊢ ( ( 𝜑 → ( 𝜓 ∧ 𝜒 ) ) → ( ( 𝜃 ⊼ 𝜒 ) → ( 𝜑 ⊼ 𝜃 ) ) ) |
| 12 |
|
nanim |
⊢ ( ( ( 𝜃 ⊼ 𝜒 ) → ( 𝜑 ⊼ 𝜃 ) ) ↔ ( ( 𝜃 ⊼ 𝜒 ) ⊼ ( ( 𝜑 ⊼ 𝜃 ) ⊼ ( 𝜑 ⊼ 𝜃 ) ) ) ) |
| 13 |
11 12
|
sylib |
⊢ ( ( 𝜑 → ( 𝜓 ∧ 𝜒 ) ) → ( ( 𝜃 ⊼ 𝜒 ) ⊼ ( ( 𝜑 ⊼ 𝜃 ) ⊼ ( 𝜑 ⊼ 𝜃 ) ) ) ) |
| 14 |
|
pm3.21 |
⊢ ( 𝜓 → ( 𝜑 → ( 𝜑 ∧ 𝜓 ) ) ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝜓 ∧ 𝜒 ) → ( 𝜑 → ( 𝜑 ∧ 𝜓 ) ) ) |
| 16 |
15
|
com12 |
⊢ ( 𝜑 → ( ( 𝜓 ∧ 𝜒 ) → ( 𝜑 ∧ 𝜓 ) ) ) |
| 17 |
16
|
a2i |
⊢ ( ( 𝜑 → ( 𝜓 ∧ 𝜒 ) ) → ( 𝜑 → ( 𝜑 ∧ 𝜓 ) ) ) |
| 18 |
|
nannan |
⊢ ( ( 𝜑 ⊼ ( 𝜑 ⊼ 𝜓 ) ) ↔ ( 𝜑 → ( 𝜑 ∧ 𝜓 ) ) ) |
| 19 |
17 18
|
sylibr |
⊢ ( ( 𝜑 → ( 𝜓 ∧ 𝜒 ) ) → ( 𝜑 ⊼ ( 𝜑 ⊼ 𝜓 ) ) ) |
| 20 |
13 19
|
jca |
⊢ ( ( 𝜑 → ( 𝜓 ∧ 𝜒 ) ) → ( ( ( 𝜃 ⊼ 𝜒 ) ⊼ ( ( 𝜑 ⊼ 𝜃 ) ⊼ ( 𝜑 ⊼ 𝜃 ) ) ) ∧ ( 𝜑 ⊼ ( 𝜑 ⊼ 𝜓 ) ) ) ) |
| 21 |
1 20
|
sylbi |
⊢ ( ( 𝜑 ⊼ ( 𝜓 ⊼ 𝜒 ) ) → ( ( ( 𝜃 ⊼ 𝜒 ) ⊼ ( ( 𝜑 ⊼ 𝜃 ) ⊼ ( 𝜑 ⊼ 𝜃 ) ) ) ∧ ( 𝜑 ⊼ ( 𝜑 ⊼ 𝜓 ) ) ) ) |
| 22 |
|
nannan |
⊢ ( ( ( 𝜑 ⊼ ( 𝜓 ⊼ 𝜒 ) ) ⊼ ( ( ( 𝜃 ⊼ 𝜒 ) ⊼ ( ( 𝜑 ⊼ 𝜃 ) ⊼ ( 𝜑 ⊼ 𝜃 ) ) ) ⊼ ( 𝜑 ⊼ ( 𝜑 ⊼ 𝜓 ) ) ) ) ↔ ( ( 𝜑 ⊼ ( 𝜓 ⊼ 𝜒 ) ) → ( ( ( 𝜃 ⊼ 𝜒 ) ⊼ ( ( 𝜑 ⊼ 𝜃 ) ⊼ ( 𝜑 ⊼ 𝜃 ) ) ) ∧ ( 𝜑 ⊼ ( 𝜑 ⊼ 𝜓 ) ) ) ) ) |
| 23 |
21 22
|
mpbir |
⊢ ( ( 𝜑 ⊼ ( 𝜓 ⊼ 𝜒 ) ) ⊼ ( ( ( 𝜃 ⊼ 𝜒 ) ⊼ ( ( 𝜑 ⊼ 𝜃 ) ⊼ ( 𝜑 ⊼ 𝜃 ) ) ) ⊼ ( 𝜑 ⊼ ( 𝜑 ⊼ 𝜓 ) ) ) ) |