| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nannan |  |-  ( ( ph -/\ ( ps -/\ ch ) ) <-> ( ph -> ( ps /\ ch ) ) ) | 
						
							| 2 |  | simpr |  |-  ( ( ps /\ ch ) -> ch ) | 
						
							| 3 | 2 | imim2i |  |-  ( ( ph -> ( ps /\ ch ) ) -> ( ph -> ch ) ) | 
						
							| 4 |  | pm2.27 |  |-  ( ph -> ( ( ph -> ch ) -> ch ) ) | 
						
							| 5 | 4 | anim2d |  |-  ( ph -> ( ( th /\ ( ph -> ch ) ) -> ( th /\ ch ) ) ) | 
						
							| 6 | 5 | expdimp |  |-  ( ( ph /\ th ) -> ( ( ph -> ch ) -> ( th /\ ch ) ) ) | 
						
							| 7 | 3 6 | syl5com |  |-  ( ( ph -> ( ps /\ ch ) ) -> ( ( ph /\ th ) -> ( th /\ ch ) ) ) | 
						
							| 8 | 7 | con3d |  |-  ( ( ph -> ( ps /\ ch ) ) -> ( -. ( th /\ ch ) -> -. ( ph /\ th ) ) ) | 
						
							| 9 |  | df-nan |  |-  ( ( th -/\ ch ) <-> -. ( th /\ ch ) ) | 
						
							| 10 |  | df-nan |  |-  ( ( ph -/\ th ) <-> -. ( ph /\ th ) ) | 
						
							| 11 | 8 9 10 | 3imtr4g |  |-  ( ( ph -> ( ps /\ ch ) ) -> ( ( th -/\ ch ) -> ( ph -/\ th ) ) ) | 
						
							| 12 |  | nanim |  |-  ( ( ( th -/\ ch ) -> ( ph -/\ th ) ) <-> ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) | 
						
							| 13 | 11 12 | sylib |  |-  ( ( ph -> ( ps /\ ch ) ) -> ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) | 
						
							| 14 |  | pm3.21 |  |-  ( ps -> ( ph -> ( ph /\ ps ) ) ) | 
						
							| 15 | 14 | adantr |  |-  ( ( ps /\ ch ) -> ( ph -> ( ph /\ ps ) ) ) | 
						
							| 16 | 15 | com12 |  |-  ( ph -> ( ( ps /\ ch ) -> ( ph /\ ps ) ) ) | 
						
							| 17 | 16 | a2i |  |-  ( ( ph -> ( ps /\ ch ) ) -> ( ph -> ( ph /\ ps ) ) ) | 
						
							| 18 |  | nannan |  |-  ( ( ph -/\ ( ph -/\ ps ) ) <-> ( ph -> ( ph /\ ps ) ) ) | 
						
							| 19 | 17 18 | sylibr |  |-  ( ( ph -> ( ps /\ ch ) ) -> ( ph -/\ ( ph -/\ ps ) ) ) | 
						
							| 20 | 13 19 | jca |  |-  ( ( ph -> ( ps /\ ch ) ) -> ( ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) /\ ( ph -/\ ( ph -/\ ps ) ) ) ) | 
						
							| 21 | 1 20 | sylbi |  |-  ( ( ph -/\ ( ps -/\ ch ) ) -> ( ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) /\ ( ph -/\ ( ph -/\ ps ) ) ) ) | 
						
							| 22 |  | nannan |  |-  ( ( ( ph -/\ ( ps -/\ ch ) ) -/\ ( ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) -/\ ( ph -/\ ( ph -/\ ps ) ) ) ) <-> ( ( ph -/\ ( ps -/\ ch ) ) -> ( ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) /\ ( ph -/\ ( ph -/\ ps ) ) ) ) ) | 
						
							| 23 | 21 22 | mpbir |  |-  ( ( ph -/\ ( ps -/\ ch ) ) -/\ ( ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) -/\ ( ph -/\ ( ph -/\ ps ) ) ) ) |