| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nannan |
|- ( ( ph -/\ ( ps -/\ ch ) ) <-> ( ph -> ( ps /\ ch ) ) ) |
| 2 |
1
|
biimpi |
|- ( ( ph -/\ ( ps -/\ ch ) ) -> ( ph -> ( ps /\ ch ) ) ) |
| 3 |
|
simpr |
|- ( ( ps /\ ch ) -> ch ) |
| 4 |
3
|
imim2i |
|- ( ( ph -> ( ps /\ ch ) ) -> ( ph -> ch ) ) |
| 5 |
|
simpl |
|- ( ( ps /\ ch ) -> ps ) |
| 6 |
5
|
imim2i |
|- ( ( ph -> ( ps /\ ch ) ) -> ( ph -> ps ) ) |
| 7 |
|
pm2.27 |
|- ( ph -> ( ( ph -> ps ) -> ps ) ) |
| 8 |
7
|
anim2d |
|- ( ph -> ( ( th /\ ( ph -> ps ) ) -> ( th /\ ps ) ) ) |
| 9 |
8
|
expdimp |
|- ( ( ph /\ th ) -> ( ( ph -> ps ) -> ( th /\ ps ) ) ) |
| 10 |
6 9
|
syl5com |
|- ( ( ph -> ( ps /\ ch ) ) -> ( ( ph /\ th ) -> ( th /\ ps ) ) ) |
| 11 |
|
ancr |
|- ( ( ph -> ch ) -> ( ph -> ( ch /\ ph ) ) ) |
| 12 |
11
|
anim1i |
|- ( ( ( ph -> ch ) /\ ( ( ph /\ th ) -> ( th /\ ps ) ) ) -> ( ( ph -> ( ch /\ ph ) ) /\ ( ( ph /\ th ) -> ( th /\ ps ) ) ) ) |
| 13 |
4 10 12
|
syl2anc |
|- ( ( ph -> ( ps /\ ch ) ) -> ( ( ph -> ( ch /\ ph ) ) /\ ( ( ph /\ th ) -> ( th /\ ps ) ) ) ) |
| 14 |
|
con3 |
|- ( ( ( ph /\ th ) -> ( th /\ ps ) ) -> ( -. ( th /\ ps ) -> -. ( ph /\ th ) ) ) |
| 15 |
|
df-nan |
|- ( ( th -/\ ps ) <-> -. ( th /\ ps ) ) |
| 16 |
|
df-nan |
|- ( ( ph -/\ th ) <-> -. ( ph /\ th ) ) |
| 17 |
14 15 16
|
3imtr4g |
|- ( ( ( ph /\ th ) -> ( th /\ ps ) ) -> ( ( th -/\ ps ) -> ( ph -/\ th ) ) ) |
| 18 |
17
|
anim2i |
|- ( ( ( ph -> ( ch /\ ph ) ) /\ ( ( ph /\ th ) -> ( th /\ ps ) ) ) -> ( ( ph -> ( ch /\ ph ) ) /\ ( ( th -/\ ps ) -> ( ph -/\ th ) ) ) ) |
| 19 |
|
nannan |
|- ( ( ph -/\ ( ch -/\ ph ) ) <-> ( ph -> ( ch /\ ph ) ) ) |
| 20 |
19
|
biimpri |
|- ( ( ph -> ( ch /\ ph ) ) -> ( ph -/\ ( ch -/\ ph ) ) ) |
| 21 |
|
nanim |
|- ( ( ( th -/\ ps ) -> ( ph -/\ th ) ) <-> ( ( th -/\ ps ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) |
| 22 |
21
|
biimpi |
|- ( ( ( th -/\ ps ) -> ( ph -/\ th ) ) -> ( ( th -/\ ps ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) |
| 23 |
20 22
|
anim12i |
|- ( ( ( ph -> ( ch /\ ph ) ) /\ ( ( th -/\ ps ) -> ( ph -/\ th ) ) ) -> ( ( ph -/\ ( ch -/\ ph ) ) /\ ( ( th -/\ ps ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) ) |
| 24 |
2 13 18 23
|
4syl |
|- ( ( ph -/\ ( ps -/\ ch ) ) -> ( ( ph -/\ ( ch -/\ ph ) ) /\ ( ( th -/\ ps ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) ) |
| 25 |
|
nannan |
|- ( ( ( ph -/\ ( ps -/\ ch ) ) -/\ ( ( ph -/\ ( ch -/\ ph ) ) -/\ ( ( th -/\ ps ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) ) <-> ( ( ph -/\ ( ps -/\ ch ) ) -> ( ( ph -/\ ( ch -/\ ph ) ) /\ ( ( th -/\ ps ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) ) ) |
| 26 |
24 25
|
mpbir |
|- ( ( ph -/\ ( ps -/\ ch ) ) -/\ ( ( ph -/\ ( ch -/\ ph ) ) -/\ ( ( th -/\ ps ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) ) |