| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nannan |  |-  ( ( ph -/\ ( ps -/\ ch ) ) <-> ( ph -> ( ps /\ ch ) ) ) | 
						
							| 2 | 1 | biimpi |  |-  ( ( ph -/\ ( ps -/\ ch ) ) -> ( ph -> ( ps /\ ch ) ) ) | 
						
							| 3 |  | simpr |  |-  ( ( ps /\ ch ) -> ch ) | 
						
							| 4 | 3 | imim2i |  |-  ( ( ph -> ( ps /\ ch ) ) -> ( ph -> ch ) ) | 
						
							| 5 |  | simpl |  |-  ( ( ps /\ ch ) -> ps ) | 
						
							| 6 | 5 | imim2i |  |-  ( ( ph -> ( ps /\ ch ) ) -> ( ph -> ps ) ) | 
						
							| 7 |  | pm2.27 |  |-  ( ph -> ( ( ph -> ps ) -> ps ) ) | 
						
							| 8 | 7 | anim2d |  |-  ( ph -> ( ( th /\ ( ph -> ps ) ) -> ( th /\ ps ) ) ) | 
						
							| 9 | 8 | expdimp |  |-  ( ( ph /\ th ) -> ( ( ph -> ps ) -> ( th /\ ps ) ) ) | 
						
							| 10 | 6 9 | syl5com |  |-  ( ( ph -> ( ps /\ ch ) ) -> ( ( ph /\ th ) -> ( th /\ ps ) ) ) | 
						
							| 11 |  | ancr |  |-  ( ( ph -> ch ) -> ( ph -> ( ch /\ ph ) ) ) | 
						
							| 12 | 11 | anim1i |  |-  ( ( ( ph -> ch ) /\ ( ( ph /\ th ) -> ( th /\ ps ) ) ) -> ( ( ph -> ( ch /\ ph ) ) /\ ( ( ph /\ th ) -> ( th /\ ps ) ) ) ) | 
						
							| 13 | 4 10 12 | syl2anc |  |-  ( ( ph -> ( ps /\ ch ) ) -> ( ( ph -> ( ch /\ ph ) ) /\ ( ( ph /\ th ) -> ( th /\ ps ) ) ) ) | 
						
							| 14 |  | con3 |  |-  ( ( ( ph /\ th ) -> ( th /\ ps ) ) -> ( -. ( th /\ ps ) -> -. ( ph /\ th ) ) ) | 
						
							| 15 |  | df-nan |  |-  ( ( th -/\ ps ) <-> -. ( th /\ ps ) ) | 
						
							| 16 |  | df-nan |  |-  ( ( ph -/\ th ) <-> -. ( ph /\ th ) ) | 
						
							| 17 | 14 15 16 | 3imtr4g |  |-  ( ( ( ph /\ th ) -> ( th /\ ps ) ) -> ( ( th -/\ ps ) -> ( ph -/\ th ) ) ) | 
						
							| 18 | 17 | anim2i |  |-  ( ( ( ph -> ( ch /\ ph ) ) /\ ( ( ph /\ th ) -> ( th /\ ps ) ) ) -> ( ( ph -> ( ch /\ ph ) ) /\ ( ( th -/\ ps ) -> ( ph -/\ th ) ) ) ) | 
						
							| 19 |  | nannan |  |-  ( ( ph -/\ ( ch -/\ ph ) ) <-> ( ph -> ( ch /\ ph ) ) ) | 
						
							| 20 | 19 | biimpri |  |-  ( ( ph -> ( ch /\ ph ) ) -> ( ph -/\ ( ch -/\ ph ) ) ) | 
						
							| 21 |  | nanim |  |-  ( ( ( th -/\ ps ) -> ( ph -/\ th ) ) <-> ( ( th -/\ ps ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) | 
						
							| 22 | 21 | biimpi |  |-  ( ( ( th -/\ ps ) -> ( ph -/\ th ) ) -> ( ( th -/\ ps ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) | 
						
							| 23 | 20 22 | anim12i |  |-  ( ( ( ph -> ( ch /\ ph ) ) /\ ( ( th -/\ ps ) -> ( ph -/\ th ) ) ) -> ( ( ph -/\ ( ch -/\ ph ) ) /\ ( ( th -/\ ps ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) ) | 
						
							| 24 | 2 13 18 23 | 4syl |  |-  ( ( ph -/\ ( ps -/\ ch ) ) -> ( ( ph -/\ ( ch -/\ ph ) ) /\ ( ( th -/\ ps ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) ) | 
						
							| 25 |  | nannan |  |-  ( ( ( ph -/\ ( ps -/\ ch ) ) -/\ ( ( ph -/\ ( ch -/\ ph ) ) -/\ ( ( th -/\ ps ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) ) <-> ( ( ph -/\ ( ps -/\ ch ) ) -> ( ( ph -/\ ( ch -/\ ph ) ) /\ ( ( th -/\ ps ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) ) ) | 
						
							| 26 | 24 25 | mpbir |  |-  ( ( ph -/\ ( ps -/\ ch ) ) -/\ ( ( ph -/\ ( ch -/\ ph ) ) -/\ ( ( th -/\ ps ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) ) |