| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nannan | ⊢ ( ( 𝜑  ⊼  ( 𝜓  ⊼  𝜒 ) )  ↔  ( 𝜑  →  ( 𝜓  ∧  𝜒 ) ) ) | 
						
							| 2 | 1 | biimpi | ⊢ ( ( 𝜑  ⊼  ( 𝜓  ⊼  𝜒 ) )  →  ( 𝜑  →  ( 𝜓  ∧  𝜒 ) ) ) | 
						
							| 3 |  | simpr | ⊢ ( ( 𝜓  ∧  𝜒 )  →  𝜒 ) | 
						
							| 4 | 3 | imim2i | ⊢ ( ( 𝜑  →  ( 𝜓  ∧  𝜒 ) )  →  ( 𝜑  →  𝜒 ) ) | 
						
							| 5 |  | simpl | ⊢ ( ( 𝜓  ∧  𝜒 )  →  𝜓 ) | 
						
							| 6 | 5 | imim2i | ⊢ ( ( 𝜑  →  ( 𝜓  ∧  𝜒 ) )  →  ( 𝜑  →  𝜓 ) ) | 
						
							| 7 |  | pm2.27 | ⊢ ( 𝜑  →  ( ( 𝜑  →  𝜓 )  →  𝜓 ) ) | 
						
							| 8 | 7 | anim2d | ⊢ ( 𝜑  →  ( ( 𝜃  ∧  ( 𝜑  →  𝜓 ) )  →  ( 𝜃  ∧  𝜓 ) ) ) | 
						
							| 9 | 8 | expdimp | ⊢ ( ( 𝜑  ∧  𝜃 )  →  ( ( 𝜑  →  𝜓 )  →  ( 𝜃  ∧  𝜓 ) ) ) | 
						
							| 10 | 6 9 | syl5com | ⊢ ( ( 𝜑  →  ( 𝜓  ∧  𝜒 ) )  →  ( ( 𝜑  ∧  𝜃 )  →  ( 𝜃  ∧  𝜓 ) ) ) | 
						
							| 11 |  | ancr | ⊢ ( ( 𝜑  →  𝜒 )  →  ( 𝜑  →  ( 𝜒  ∧  𝜑 ) ) ) | 
						
							| 12 | 11 | anim1i | ⊢ ( ( ( 𝜑  →  𝜒 )  ∧  ( ( 𝜑  ∧  𝜃 )  →  ( 𝜃  ∧  𝜓 ) ) )  →  ( ( 𝜑  →  ( 𝜒  ∧  𝜑 ) )  ∧  ( ( 𝜑  ∧  𝜃 )  →  ( 𝜃  ∧  𝜓 ) ) ) ) | 
						
							| 13 | 4 10 12 | syl2anc | ⊢ ( ( 𝜑  →  ( 𝜓  ∧  𝜒 ) )  →  ( ( 𝜑  →  ( 𝜒  ∧  𝜑 ) )  ∧  ( ( 𝜑  ∧  𝜃 )  →  ( 𝜃  ∧  𝜓 ) ) ) ) | 
						
							| 14 |  | con3 | ⊢ ( ( ( 𝜑  ∧  𝜃 )  →  ( 𝜃  ∧  𝜓 ) )  →  ( ¬  ( 𝜃  ∧  𝜓 )  →  ¬  ( 𝜑  ∧  𝜃 ) ) ) | 
						
							| 15 |  | df-nan | ⊢ ( ( 𝜃  ⊼  𝜓 )  ↔  ¬  ( 𝜃  ∧  𝜓 ) ) | 
						
							| 16 |  | df-nan | ⊢ ( ( 𝜑  ⊼  𝜃 )  ↔  ¬  ( 𝜑  ∧  𝜃 ) ) | 
						
							| 17 | 14 15 16 | 3imtr4g | ⊢ ( ( ( 𝜑  ∧  𝜃 )  →  ( 𝜃  ∧  𝜓 ) )  →  ( ( 𝜃  ⊼  𝜓 )  →  ( 𝜑  ⊼  𝜃 ) ) ) | 
						
							| 18 | 17 | anim2i | ⊢ ( ( ( 𝜑  →  ( 𝜒  ∧  𝜑 ) )  ∧  ( ( 𝜑  ∧  𝜃 )  →  ( 𝜃  ∧  𝜓 ) ) )  →  ( ( 𝜑  →  ( 𝜒  ∧  𝜑 ) )  ∧  ( ( 𝜃  ⊼  𝜓 )  →  ( 𝜑  ⊼  𝜃 ) ) ) ) | 
						
							| 19 |  | nannan | ⊢ ( ( 𝜑  ⊼  ( 𝜒  ⊼  𝜑 ) )  ↔  ( 𝜑  →  ( 𝜒  ∧  𝜑 ) ) ) | 
						
							| 20 | 19 | biimpri | ⊢ ( ( 𝜑  →  ( 𝜒  ∧  𝜑 ) )  →  ( 𝜑  ⊼  ( 𝜒  ⊼  𝜑 ) ) ) | 
						
							| 21 |  | nanim | ⊢ ( ( ( 𝜃  ⊼  𝜓 )  →  ( 𝜑  ⊼  𝜃 ) )  ↔  ( ( 𝜃  ⊼  𝜓 )  ⊼  ( ( 𝜑  ⊼  𝜃 )  ⊼  ( 𝜑  ⊼  𝜃 ) ) ) ) | 
						
							| 22 | 21 | biimpi | ⊢ ( ( ( 𝜃  ⊼  𝜓 )  →  ( 𝜑  ⊼  𝜃 ) )  →  ( ( 𝜃  ⊼  𝜓 )  ⊼  ( ( 𝜑  ⊼  𝜃 )  ⊼  ( 𝜑  ⊼  𝜃 ) ) ) ) | 
						
							| 23 | 20 22 | anim12i | ⊢ ( ( ( 𝜑  →  ( 𝜒  ∧  𝜑 ) )  ∧  ( ( 𝜃  ⊼  𝜓 )  →  ( 𝜑  ⊼  𝜃 ) ) )  →  ( ( 𝜑  ⊼  ( 𝜒  ⊼  𝜑 ) )  ∧  ( ( 𝜃  ⊼  𝜓 )  ⊼  ( ( 𝜑  ⊼  𝜃 )  ⊼  ( 𝜑  ⊼  𝜃 ) ) ) ) ) | 
						
							| 24 | 2 13 18 23 | 4syl | ⊢ ( ( 𝜑  ⊼  ( 𝜓  ⊼  𝜒 ) )  →  ( ( 𝜑  ⊼  ( 𝜒  ⊼  𝜑 ) )  ∧  ( ( 𝜃  ⊼  𝜓 )  ⊼  ( ( 𝜑  ⊼  𝜃 )  ⊼  ( 𝜑  ⊼  𝜃 ) ) ) ) ) | 
						
							| 25 |  | nannan | ⊢ ( ( ( 𝜑  ⊼  ( 𝜓  ⊼  𝜒 ) )  ⊼  ( ( 𝜑  ⊼  ( 𝜒  ⊼  𝜑 ) )  ⊼  ( ( 𝜃  ⊼  𝜓 )  ⊼  ( ( 𝜑  ⊼  𝜃 )  ⊼  ( 𝜑  ⊼  𝜃 ) ) ) ) )  ↔  ( ( 𝜑  ⊼  ( 𝜓  ⊼  𝜒 ) )  →  ( ( 𝜑  ⊼  ( 𝜒  ⊼  𝜑 ) )  ∧  ( ( 𝜃  ⊼  𝜓 )  ⊼  ( ( 𝜑  ⊼  𝜃 )  ⊼  ( 𝜑  ⊼  𝜃 ) ) ) ) ) ) | 
						
							| 26 | 24 25 | mpbir | ⊢ ( ( 𝜑  ⊼  ( 𝜓  ⊼  𝜒 ) )  ⊼  ( ( 𝜑  ⊼  ( 𝜒  ⊼  𝜑 ) )  ⊼  ( ( 𝜃  ⊼  𝜓 )  ⊼  ( ( 𝜑  ⊼  𝜃 )  ⊼  ( 𝜑  ⊼  𝜃 ) ) ) ) ) |