| Step | Hyp | Ref | Expression | 
						
							| 1 |  | orc | ⊢ ( ¬  𝜑  →  ( ¬  𝜑  ∨  𝜓 ) ) | 
						
							| 2 |  | olc | ⊢ ( 𝜓  →  ( ¬  𝜑  ∨  𝜓 ) ) | 
						
							| 3 | 1 2 | ja | ⊢ ( ( 𝜑  →  𝜓 )  →  ( ¬  𝜑  ∨  𝜓 ) ) | 
						
							| 4 | 3 | imim1i | ⊢ ( ( ( ¬  𝜑  ∨  𝜓 )  →  ( 𝜒  ∨  ( 𝜃  ∨  𝜏 ) ) )  →  ( ( 𝜑  →  𝜓 )  →  ( 𝜒  ∨  ( 𝜃  ∨  𝜏 ) ) ) ) | 
						
							| 5 |  | pm2.24 | ⊢ ( 𝜃  →  ( ¬  𝜃  →  𝜑 ) ) | 
						
							| 6 |  | idd | ⊢ ( 𝜃  →  ( 𝜑  →  𝜑 ) ) | 
						
							| 7 | 5 6 | jaod | ⊢ ( 𝜃  →  ( ( ¬  𝜃  ∨  𝜑 )  →  𝜑 ) ) | 
						
							| 8 | 7 | com12 | ⊢ ( ( ¬  𝜃  ∨  𝜑 )  →  ( 𝜃  →  𝜑 ) ) | 
						
							| 9 |  | pm1.5 | ⊢ ( ( ¬  ( 𝜑  →  𝜓 )  ∨  ( 𝜒  ∨  ( 𝜃  ∨  𝜏 ) ) )  →  ( 𝜒  ∨  ( ¬  ( 𝜑  →  𝜓 )  ∨  ( 𝜃  ∨  𝜏 ) ) ) ) | 
						
							| 10 |  | pm2.3 | ⊢ ( ( ¬  ( 𝜑  →  𝜓 )  ∨  ( 𝜃  ∨  𝜏 ) )  →  ( ¬  ( 𝜑  →  𝜓 )  ∨  ( 𝜏  ∨  𝜃 ) ) ) | 
						
							| 11 |  | pm1.5 | ⊢ ( ( ¬  ( 𝜑  →  𝜓 )  ∨  ( 𝜏  ∨  𝜃 ) )  →  ( 𝜏  ∨  ( ¬  ( 𝜑  →  𝜓 )  ∨  𝜃 ) ) ) | 
						
							| 12 |  | pm2.21 | ⊢ ( ¬  𝜑  →  ( 𝜑  →  𝜓 ) ) | 
						
							| 13 |  | jcn | ⊢ ( 𝜃  →  ( ¬  𝜑  →  ¬  ( 𝜃  →  𝜑 ) ) ) | 
						
							| 14 | 12 13 | imim12i | ⊢ ( ( ( 𝜑  →  𝜓 )  →  𝜃 )  →  ( ¬  𝜑  →  ( ¬  𝜑  →  ¬  ( 𝜃  →  𝜑 ) ) ) ) | 
						
							| 15 | 14 | pm2.43d | ⊢ ( ( ( 𝜑  →  𝜓 )  →  𝜃 )  →  ( ¬  𝜑  →  ¬  ( 𝜃  →  𝜑 ) ) ) | 
						
							| 16 | 15 | con4d | ⊢ ( ( ( 𝜑  →  𝜓 )  →  𝜃 )  →  ( ( 𝜃  →  𝜑 )  →  𝜑 ) ) | 
						
							| 17 |  | imor | ⊢ ( ( ( 𝜑  →  𝜓 )  →  𝜃 )  ↔  ( ¬  ( 𝜑  →  𝜓 )  ∨  𝜃 ) ) | 
						
							| 18 |  | imor | ⊢ ( ( ( 𝜃  →  𝜑 )  →  𝜑 )  ↔  ( ¬  ( 𝜃  →  𝜑 )  ∨  𝜑 ) ) | 
						
							| 19 | 16 17 18 | 3imtr3i | ⊢ ( ( ¬  ( 𝜑  →  𝜓 )  ∨  𝜃 )  →  ( ¬  ( 𝜃  →  𝜑 )  ∨  𝜑 ) ) | 
						
							| 20 | 19 | orim2i | ⊢ ( ( 𝜏  ∨  ( ¬  ( 𝜑  →  𝜓 )  ∨  𝜃 ) )  →  ( 𝜏  ∨  ( ¬  ( 𝜃  →  𝜑 )  ∨  𝜑 ) ) ) | 
						
							| 21 |  | pm1.5 | ⊢ ( ( 𝜏  ∨  ( ¬  ( 𝜃  →  𝜑 )  ∨  𝜑 ) )  →  ( ¬  ( 𝜃  →  𝜑 )  ∨  ( 𝜏  ∨  𝜑 ) ) ) | 
						
							| 22 | 10 11 20 21 | 4syl | ⊢ ( ( ¬  ( 𝜑  →  𝜓 )  ∨  ( 𝜃  ∨  𝜏 ) )  →  ( ¬  ( 𝜃  →  𝜑 )  ∨  ( 𝜏  ∨  𝜑 ) ) ) | 
						
							| 23 | 22 | orim2i | ⊢ ( ( 𝜒  ∨  ( ¬  ( 𝜑  →  𝜓 )  ∨  ( 𝜃  ∨  𝜏 ) ) )  →  ( 𝜒  ∨  ( ¬  ( 𝜃  →  𝜑 )  ∨  ( 𝜏  ∨  𝜑 ) ) ) ) | 
						
							| 24 |  | pm1.5 | ⊢ ( ( 𝜒  ∨  ( ¬  ( 𝜃  →  𝜑 )  ∨  ( 𝜏  ∨  𝜑 ) ) )  →  ( ¬  ( 𝜃  →  𝜑 )  ∨  ( 𝜒  ∨  ( 𝜏  ∨  𝜑 ) ) ) ) | 
						
							| 25 | 9 23 24 | 3syl | ⊢ ( ( ¬  ( 𝜑  →  𝜓 )  ∨  ( 𝜒  ∨  ( 𝜃  ∨  𝜏 ) ) )  →  ( ¬  ( 𝜃  →  𝜑 )  ∨  ( 𝜒  ∨  ( 𝜏  ∨  𝜑 ) ) ) ) | 
						
							| 26 |  | imor | ⊢ ( ( ( 𝜑  →  𝜓 )  →  ( 𝜒  ∨  ( 𝜃  ∨  𝜏 ) ) )  ↔  ( ¬  ( 𝜑  →  𝜓 )  ∨  ( 𝜒  ∨  ( 𝜃  ∨  𝜏 ) ) ) ) | 
						
							| 27 |  | imor | ⊢ ( ( ( 𝜃  →  𝜑 )  →  ( 𝜒  ∨  ( 𝜏  ∨  𝜑 ) ) )  ↔  ( ¬  ( 𝜃  →  𝜑 )  ∨  ( 𝜒  ∨  ( 𝜏  ∨  𝜑 ) ) ) ) | 
						
							| 28 | 25 26 27 | 3imtr4i | ⊢ ( ( ( 𝜑  →  𝜓 )  →  ( 𝜒  ∨  ( 𝜃  ∨  𝜏 ) ) )  →  ( ( 𝜃  →  𝜑 )  →  ( 𝜒  ∨  ( 𝜏  ∨  𝜑 ) ) ) ) | 
						
							| 29 | 4 8 28 | syl2im | ⊢ ( ( ( ¬  𝜑  ∨  𝜓 )  →  ( 𝜒  ∨  ( 𝜃  ∨  𝜏 ) ) )  →  ( ( ¬  𝜃  ∨  𝜑 )  →  ( 𝜒  ∨  ( 𝜏  ∨  𝜑 ) ) ) ) | 
						
							| 30 |  | imor | ⊢ ( ( ( ¬  𝜑  ∨  𝜓 )  →  ( 𝜒  ∨  ( 𝜃  ∨  𝜏 ) ) )  ↔  ( ¬  ( ¬  𝜑  ∨  𝜓 )  ∨  ( 𝜒  ∨  ( 𝜃  ∨  𝜏 ) ) ) ) | 
						
							| 31 |  | imor | ⊢ ( ( ( ¬  𝜃  ∨  𝜑 )  →  ( 𝜒  ∨  ( 𝜏  ∨  𝜑 ) ) )  ↔  ( ¬  ( ¬  𝜃  ∨  𝜑 )  ∨  ( 𝜒  ∨  ( 𝜏  ∨  𝜑 ) ) ) ) | 
						
							| 32 | 29 30 31 | 3imtr3i | ⊢ ( ( ¬  ( ¬  𝜑  ∨  𝜓 )  ∨  ( 𝜒  ∨  ( 𝜃  ∨  𝜏 ) ) )  →  ( ¬  ( ¬  𝜃  ∨  𝜑 )  ∨  ( 𝜒  ∨  ( 𝜏  ∨  𝜑 ) ) ) ) | 
						
							| 33 | 32 | imori | ⊢ ( ¬  ( ¬  ( ¬  𝜑  ∨  𝜓 )  ∨  ( 𝜒  ∨  ( 𝜃  ∨  𝜏 ) ) )  ∨  ( ¬  ( ¬  𝜃  ∨  𝜑 )  ∨  ( 𝜒  ∨  ( 𝜏  ∨  𝜑 ) ) ) ) |